1.Study on the effects and mechanisms of Lycium ruthenicum Murr. in improving sleep
Ming QIAO ; Yao ZHAO ; Yi ZHU ; Yexia CAO ; Limei WEN ; Yuehong GONG ; Xiang LI ; Juanchen WANG ; Tao WANG ; Jianhua YANG ; Junping HU
China Pharmacy 2026;37(1):24-29
OBJECTIVE To investigate the effects and mechanisms of Lycium ruthenicum Murr. in improving sleep. METHODS Network pharmacology was employed to identify the active components of L. ruthenicum and their associated disease targets, followed by enrichment analysis. A caffeine‑induced zebrafish model of sleep deprivation was established , and the zebrafish were treated with L. ruthenicum Murr. extract (LRME) at concentrations of 0.1, 0.2 and 0.4 mg/mL, respectively; 24 h later, behavioral changes of zebrafish and pathological alterations in brain neurons were subsequently observed. The levels of inflammatory factors [interleukin-6 (IL-6), IL-1β, IL-10, tumor necrosis factor-α (TNF-α)], oxidative stress markers [superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), catalase (CAT)], and neurotransmitters [5- hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), glutamic acid (Glu), dopamine (DA), and norepinephrine (NE)] were measured. The protein expression levels of protein kinase B1 (AKT1), phosphorylated AKT1 (p-AKT1), epidermal growth factor receptor (EGFR), B-cell lymphoma 2 (Bcl-2), sarcoma proto-oncogene,non-receptor tyrosine kinase (SRC), and heat shock protein 90α family class A member 1 (HSP90AA1) in the zebrafish were also determined. RESULTS A total of 12 active components and 176 intersecting disease targets were identified through network pharmacology analysis. Among these, apigenin, naringenin and others were recognized as core active compounds, while AKT1, EGFR and others served as key targets; EGFR tyrosine kinase inhibitor resistance signaling pathway was identified as the critical pathway. The sleep improvement rates in zebrafish of LRME low-, medium-, and high-dose groups were 54.60%, 69.03% and 77.97%, 开发。E-mail:hjp_yft@163.com respectively, while the inhibition ratios of locomotor distance were 0.57, 0.83 and 0.95, respectively. Compared with the model group, the number of resting counts, resting time and resting distance were significantly increased/extended in LRME medium- and high-dose groups (P<0.05). Neuronal damage in the brain was alleviated. Additionally, the levels of IL-6, IL-1β, TNF-α, MDA, Glu, DA and NE, as well as the protein expression levels of AKT1, p-AKT1, EGFR, SRC and HSP90AA1, were markedly reduced (P<0.05), while the levels of IL-10, SOD, GSH-Px, CAT, 5-HT and GABA, as well as Bcl-2 protein expression, were significantly elevated (P<0.05). CONCLUSIONS L. ruthenicum Murr. demonstrates sleep-improving effects, and its specific mechanism may be related to the regulation of inflammatory responses, oxidative stress, neurotransmitter balance, and the EGFR tyrosine kinase inhibitor resistance signaling pathway.
2.Prediction of duloxetine blood concentration in patients with depression based on machine learning
Ming QIAO ; Lu JIN ; Yi ZHU ; Junping HU
China Pharmacy 2025;36(6):752-757
OBJECTIVE To provide medication reference for duloxetine use in clinical settings, particularly for patients with depression in primary medical institutions in Xinjiang that lack therapeutic drug monitoring conditions. METHODS The medical records of 281 depression inpatients taking duloxetine in the First Affiliated Hospital of Xinjiang Medical University from January 2022 to December 2023 were retrospectively collected. They were divided into training set (196 cases) and test set (85 cases) in the ratio of 7∶3. Feature selection was performed by encapsulating random forests (RF) with recursive feature elimination. Four machine learning algorithms, namely support vector machine, RF, extreme gradient boosting (XGBoost) and artificial neural network, were used to construct duloxetine blood concentration prediction model. The prediction performance of the models was evaluated and compared by coefficient of determination (R2), mean absolute error (MAE) and root mean squared error (RMSE). The feature of the selected optimal model was explained by Shapley additive explanation method, and the importance ranking of the features and the influence on the prediction results of duloxetine blood concentration were determined. RESULTS A total of 29 characteristic variables were selected, including age, ethnicity, body mass index(BMI), etc. XGBoost showed the highest R2 (0.808), and the lowest MAE (7.644) and RMSE (10.808). The ranking of feature importance for predicting the blood concentration of duloxetine was as follows: BMI>age>other 20 feature sets (including liver and kidney function and biochemical indicators)>daily dosage>comorbidities>combination therapy>ethnicity>white blood cell count>hemoglobin>height. CONCLUSIONS XGBoost model possesses the best prediction performance of duloxetine blood concentration; BMI and age have a greater impact on the prediction of duloxetine blood concentration.
3.Research progress on the chemical constituents,pharmacological mechanisms and clinical application of Jiegeng decoction
Yun HUANG ; Shunwang HUANG ; Jinwei QIAO ; Qian XU ; Xiaoming GAO ; Xuemei BAO ; Manqin YANG ; Ruonan XIE ; Ming CAI
China Pharmacy 2025;36(18):2348-2352
Jiegeng decoction is a classic prescription composed of two Chinese medicinal herbs: Platycodon grandiflorum and Glycyrrhiza uralensis. It has the efficacy of diffusing lung qi, resolving phlegm, relieving sore throat and discharging pus, and is commonly used in the treatment of respiratory diseases such as cough and pharyngodynia. This article reviews the chemical components, pharmacological mechanisms and clinical applications of Jiegeng decoction. It was found that Jiegeng decoction contains triterpenoid saponins, flavonoids, glycosides, acids, and other components, with platycodin D, platycodin D2, glycyrrhizic acid, glycyrrhetinic acid, liquiritin, etc., serving as the main active pharmaceutical ingredients. Jiegeng decoction and its chemical constituents exert anti-inflammatory effects by inhibiting signaling pathways such as nuclear factor-κB and mitogen- activated protein kinases, and demonstrate anti-tumor activities through mechanisms like modulating the tumor immune microenvironment and promoting cancer cell apoptosis. Additionally, it exhibits various pharmacological actions including antibacterial, antiviral, and antioxidant effects. Clinically, Jiegeng decoction, its modified prescription and compound combinations are widely used in the treatment of respiratory diseases such as cough, pneumonia, and pharyngitis, as well as digestive system disorders like constipation.
4.Phillyrin inhibits the proliferation, invasion, and epithelial-mesenchymal transition of glioma U251 cells via the HMGB1/RAGE signaling pathway
LIU Ming ; FENG Xiaosong ; ZHANG Yin ; LIU Xipeng ; LIU Yongda ; ZHANG Xiufeng ; QIAO Jianxin
Chinese Journal of Cancer Biotherapy 2025;32(10):1053-1059
[摘 要] 目的:探究连翘苷(PHN)调节高迁移率族蛋白B1(HMGB1)/晚期糖基化终产物受体(RAGE)信号通路对胶质瘤U251细胞增殖、侵袭及上皮间质转化(EMT)的影响。方法:将人胶质瘤U251细胞分为PHN-0组(0 µmol/L PHN处理)、PHN低、中和高剂量组(PHN-50、PHN-100、PHN-200组,分别用50、100和200 µmol/L PHN处理)、PHN + pcDNA-NC组(转染pcDNA-NC质粒后200 µmol/L PHN处理)和PHN + HMGB1组(转染过表达HMGB1质粒后200 µmol/L PHN处理)。CCK-8法和克隆形成实验检测各组细胞的增殖能力,流式细胞术检测各组细胞的凋亡水平,Transwell实验检测各组细胞的迁移和侵袭能力,ELISA检测各组细胞分泌IL-8水平,免疫荧光法检测各组细胞中神经钙黏素(N-cadherin)和上皮钙黏素(E-cadherin)阳性率,WB法检测各组细胞中Toll样受体4(TLR4)、核因子-κB(NF-κB)、HMGB1、RAGE、N-cadherin、E-cadherin、细胞周期蛋白D1(cyclin D1)、细胞周期蛋白依赖性激酶2(CDK2)、B淋巴细胞瘤-2(Bcl-2)、Bcl-2相关X蛋白(BAX)蛋白的表达水平。结果:与PHN-0组相比,PHN-50、PHN-100、PHN-200组U251细胞增殖活力、克隆形成数、迁移和侵袭数、IL-8分泌水平、N-cadherin阳性率及其蛋白表达、TLR4、NF-κB、HMGB1、RAGE、cyclin D1、CDK2蛋白表达均显著降低(均P < 0.05),细胞凋亡率、E-cadherin阳性率及其蛋白表达、BAX/Bcl-2比值均显著升高(均P < 0.05);同时过表达HMGB1则可逆转PHN对U251细胞增殖、迁移、侵袭及EMT的抑制作用和对凋亡的促进作用(均P < 0.05)。结论:PHN通过HMGB1/RAGE信号通路抑制胶质瘤U251细胞增殖、侵袭及EMT进程。
5.Exercise preconditioning alleviates motor deficits in MPTP-induced Parkinsonian mice by improving mitochondrial function.
Miao-Miao XU ; Dan-Ting HU ; Qiao ZHANG ; Xiao-Guang LIU ; Zhao-Wei LI ; Li-Ming LU
Acta Physiologica Sinica 2025;77(3):419-431
Parkinson's disease (PD) is a common neurodegenerative disorder mainly related to mitochondrial dysfunction of dopaminergic neurons in the midbrain substantia nigra. This study aimed to investigate the effects of exercise preconditioning on motor deficits and mitochondrial function in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Eight-week-old male C57BL/6J mice were randomly divided into four groups: sedentary + saline (SS), sedentary + MPTP (SM), exercise + saline (ES), and exercise + MPTP (EM) groups. Mice in the ES and EM groups received 4 weeks of treadmill training, and then SM and EM groups were treated with MPTP for 5 days. Motor function was assessed by behavioral tests, and morphological and functional changes in dopaminergic neurons and mitochondria in the substantia nigra of the midbrain were evaluated using immunohistochemistry, Western blot, and transmission electron microscopy technology. The results showed that, compared with the SM group, the EM group exhibited significantly improved motor ability, up-regulated protein expression levels of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the midbrain, and down-regulated protein expression of α-synuclein (α-Syn) in the mitochondria of substantia nigra. Compared with the SM group, the EM group showed up-regulated protein expression levels of mitochondrial fusion proteins, including optical atrophy protein 1 (OPA1) and mitofusin 2 (MFN2), and biogenesis-related proteins, including peroxisome proliferator activated receptor gamma coactivator 1α (PGC-1α) and mitochondrial transcription factor A (TFAM), while the protein expression levels of dynamin-related protein 1 (DRP1) and mitochondrial fission protein 1 (FIS1) were significantly down-regulated. Compared with the SM group, the EM group showed significantly reduced damage to substantia nigra mitochondria, restored mitochondrial membrane potential and ATP production, and decreased levels of reactive oxygen species (ROS). These results suggest that 4-week treadmill pre-training can alleviate MPTP-induced motor impairments in PD mice by improving mitochondrial function, providing a theoretical basis for early exercise-based prevention of PD.
Animals
;
Male
;
Physical Conditioning, Animal/physiology*
;
Mice
;
Mice, Inbred C57BL
;
Mitochondria/physiology*
;
Dopaminergic Neurons
;
MPTP Poisoning/physiopathology*
;
Substantia Nigra
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
6.Identification of blood-entering components of Anshen Dropping Pills based on UPLC-Q-TOF-MS/MS combined with network pharmacology and evaluation of their anti-insomnia effects and mechanisms.
Xia-Xia REN ; Jin-Na YANG ; Xue-Jun LUO ; Hui-Ping LI ; Miao QIAO ; Wen-Jia WANG ; Yi HE ; Shui-Ping ZHOU ; Yun-Hui HU ; Rui-Ming LI
China Journal of Chinese Materia Medica 2025;50(7):1928-1937
This study identified blood-entering components of Anshen Dropping Pills and explored their anti-insomnia effects and mechanisms. The main blood-entering components of Anshen Dropping Pills were detected and identified by UPLC-Q-TOF-MS/MS. The rationality of the formula was assessed by using enrichment analysis based on the relationship between drugs and symptoms, and core targets of its active components were selected as the the potential anti-insomnia targets of Anshen Dropping Pills through network pharmacology analysis. Furthermore, protein-protein interaction(PPI) network, Gene Ontology(GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis were performed on the core targets. An active component-core target network for Anshen Dropping Pills was constructed. Finally, the effects of low-, medium-, and high-dose groups of Anshen Dropping Pills on sleep episodes, sleep duration, and sleep latency in mice were measured by supraliminal and subliminal pentobarbital sodium experiments. Moreover, total scores of the Pittsburgh sleep quality index(PSQI) scale was used to evaluate the changes before and after the treatment with Anshen Dropping Pills in a clinical study. The enrichment analysis based on the relationship between drugs and symptoms verified the rationality of the Anshen Dropping Pills formula, and nine blood-entering components of Anshen Dropping Pills were identified by UPLC-Q-TOF-MS/MS. The network proximity revealed a significant correlation between eight components and insomnia, including magnoflorine, liquiritin, spinosin, quercitrin, jujuboside A, ginsenoside Rb_3, glycyrrhizic acid, and glycyrrhetinic acid. Network pharmacology analysis indicated that the major anti-insomnia pathways of Anshen Dropping Pills involved substance and energy metabolism, neuroprotection, immune system regulation, and endocrine regulation. Seven core genes related to insomnia were identified: APOE, ALB, BDNF, PPARG, INS, TP53, and TNF. In summary, Anshen Dropping Pills could increase sleep episodes, prolong sleep duration, and reduce sleep latency in mice. Clinical study results demonstrated that Anshen Dropping Pills could decrease total scores of PSQI scale. This study reveals the pharmacodynamic basis and potential multi-component, multi-target, and multi-pathway effects of Anshen Dropping Pills, suggesting that its anti-insomnia mechanisms may be associated with the regulation of insomnia-related signaling pathways. These findings offer a theoretical foundation for the clinical application of Anshen Dropping Pills.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Tandem Mass Spectrometry/methods*
;
Sleep Initiation and Maintenance Disorders/metabolism*
;
Mice
;
Network Pharmacology
;
Male
;
Chromatography, High Pressure Liquid
;
Humans
;
Protein Interaction Maps/drug effects*
;
Sleep/drug effects*
;
Female
;
Adult
7.Mechanism of vanillic acid against cardiac fibrosis induced by isoproterenol in mice based on Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways.
Hai-Bo HE ; Mian WU ; Jie XU ; Qian-Qian XU ; Fang-Zhu WAN ; Hua-Qiao ZHONG ; Ji-Hong ZHANG ; Gang ZHOU ; Hui-Lin QIN ; Hao-Ran LI ; Hai-Ming TANG
China Journal of Chinese Materia Medica 2025;50(8):2193-2208
This study investigated the effects and underlying mechanisms of vanillic acid(VA) against cardiac fibrosis(CF) induced by isoproterenol(ISO) in mice. Male C57BL/6J mice were randomly divided into control group, VA group(100 mg·kg~(-1), ig), ISO group(10 mg·kg~(-1), sc), ISO + VA group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig), ISO + dynamin-related protein 1(Drp1) inhibitor(Mdivi-1) group(10 mg·kg~(-1), sc + 50 mg·kg~(-1), ip), and ISO + VA + Mdivi-1 group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig + 50 mg·kg~(-1), ip). The treatment groups received the corresponding medications once daily for 14 consecutive days. On the day after the last administration, cardiac functions were evaluated, and serum and cardiac tissue samples were collected. These samples were analyzed for serum aspartate aminotransferase(AST), lactate dehydrogenase(LDH), creatine kinase-MB(CK-MB), cardiac troponin I(cTnI), reactive oxygen species(ROS), interleukin(IL)-1β, IL-4, IL-6, IL-10, IL-18, and tumor necrosis factor-α(TNF-α) levels, as well as cardiac tissue catalase(CAT), glutathione(GSH), malondialdehyde(MDA), myeloperoxidase(MPO), superoxide dismutase(SOD), total antioxidant capacity(T-AOC) activities, and cytochrome C levels in mitochondria and cytoplasm. Hematoxylin-eosin, Masson, uranium acetate and lead citrate staining were used to observe morphological and mitochondrial ultrastructural changes in the cardiac tissues, and myocardial injury area and collagen volume fraction were calculated. Flow cytometry was applied to detect the relative content and M1/M2 polarization of cardiac macrophages. The mRNA expression levels of macrophage polarization markers [CD86, CD206, arginase 1(Arg-1), inducible nitric oxide synthase(iNOS)], CF markers [type Ⅰ collagen(Coll Ⅰ), Coll Ⅲ, α-smooth muscle actin(α-SMA)], and cytokines(IL-1β, IL-4, IL-6, IL-10, IL-18, TNF-α) in cardiac tissues were determined by quantitative real-time PCR. Western blot was used to detect the protein expression levels of Coll Ⅰ, Coll Ⅲ, α-SMA, Drp1, p-Drp1, voltage-dependent anion channel(VDAC), hexokinase 1(HK1), NOD-like receptor protein 3(NLRP3), apoptosis-associated speck-like protein(ASC), caspase-1, cleaved-caspase-1, gasdermin D(GSDMD), cleaved N-terminal gasdermin D(GSDMD-N), IL-1β, IL-18, B-cell lymphoma-2(Bcl-2), B-cell lymphoma-xl(Bcl-xl), Bcl-2-associated death promoter(Bad), Bcl-2-associated X protein(Bax), apoptotic protease activating factor-1(Apaf-1), pro-caspase-3, cleaved-caspase-3, pro-caspase-9, cleaved-caspase-9, poly(ADP-ribose) polymerase-1(PARP-1), and cleaved-PARP-1 in cardiac tissues. The results showed that VA significantly improved cardiac function in mice with CF, reduced myocardial injury area and cardiac index, and decreased serum levels of AST, CK-MB, cTnI, LDH, ROS, IL-1β, IL-6, IL-18, and TNF-α. VA also lowered MDA and MPO levels, mRNA expressions of IL-1β, IL-6, IL-18, and TNF-α, and mRNA and protein expressions of Coll Ⅰ, Coll Ⅲ, and α-SMA in cardiac tissues, and increased serum levels of IL-4 and IL-10, cardiac tissue levels of CAT, GSH, SOD, and T-AOC, and mRNA expressions of IL-4 and IL-10. Additionally, VA ameliorated cardiac pathological damage, inhibited myocardial cell apoptosis, inflammatory infiltration, and collagen fiber deposition, reduced collagen volume fraction, and alleviated mitochondrial damage. VA decreased the ratio of F4/80~+CD86~+ M1 cells and the mRNA expressions of CD86 and iNOS in cardiac tissue, and increased the ratio of F4/80~+CD206~+ M2 cells and the mRNA expressions of CD206 and Arg-1. VA also reduced protein expressions of p-Drp1, VDAC, NLRP3, ASC, caspase-1, cleaved-caspase-1, GSDMD, GSDMD-N, IL-1β, IL-18, Bad, Bax, Apaf-1, cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP-1, and cytoplasmic cytochrome C, and increased the expressions of HK1, Bcl-2, Bcl-xl, pro-caspase-3, pro-caspase-9 proteins, as well as the Bcl-2/Bax and Bcl-xl/Bad ratios and mitochondrial cytochrome C content. These results indicate that VA has a significant ameliorative effect on ISO-induced CF in mice, alleviates ISO-induced oxidative damage and inflammatory response, and its mechanism may be closely related to the inhibition of Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways, suppression of myocardial cell inflammatory infiltration and collagen fiber deposition, reduction of collagen volume fraction and CollⅠ, Coll Ⅲ, and α-SMA expressions, thus mitigating CF.
Animals
;
Isoproterenol/adverse effects*
;
Male
;
Mice
;
Signal Transduction/drug effects*
;
Vanillic Acid/administration & dosage*
;
Dynamins/genetics*
;
Mice, Inbred C57BL
;
Fibrosis/genetics*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Myocardium/metabolism*
;
Humans
8.Study on fluvoxamine maleate sustained-release pellets and its compression technology
Ming-hui XU ; Xing-yue ZHANG ; Qiao DONG ; Xia ZHAO ; Yu-ru BU ; Le-zhen CHEN
Acta Pharmaceutica Sinica 2024;59(2):439-447
In this study, fluvoxamine maleate sustained-release pellet system tablets were prepared and were used to evaluate their release behaviors
9.Mechanism prediction and verification of Cistanche deserticola in the treatment of inflammatory bowel disease
Ming QIAO ; Yi ZHU ; Junping HU ; Jianhua YANG
China Pharmacy 2024;35(21):2582-2589
OBJECTIVE To investigate the mechanism of Cistanche deserticola in the treatment of inflammatory bowel disease (IBD). METHODS The active components of C. deserticola were screened based on TCMSP and literature reports. The targets of active ingredients were obtained via Swiss Target Prediction platform. Then the disease targets were obtained by searching GeneCards and OMIM databases. PPI network and “drug-compound-disease-target” network were constructed. The core components and core targets were screened. GO and KEGG enrichment analyses were performed, and molecular docking verification was conducted for core targets and core components. The IBD mice model was established and divided into model group, positive control group (dexamethasone, 0.4 mg/kg) and C. deserticola extract group (100, 200, 400 mg/kg); blank control group was set, with 8 mice in each group. Each group was given relevant medicine, once a day, for 7 consecutive days. Disease activity index (DAI) score and colon length were calculated, and the pathological morphology of the colon of mice was observed. The levels of inflammatory factors [interleukin-6 (IL-6), IL-1β, IL-10, myeloperoxidase (MPO),tumor necrosis factor-α (TNF-α)] in colon tissue, and protein expressions of core targets were detected. RESULTS A total of 39 active ingredients and 232 potential targets of C. deserticola in the treatment of IBD were obtained. The treatment of IBD with C. deserticola might be related to core components such as quercetin, suchilactone, β-sitosterol and cistanoside H, and core targets such as TNF, AKT1, STAT3, EGFR and SRC. GO and KEGG pathway analysis predicted that the biological processes of C. deserticola in the treatment of IBD were mainly related to protein phosphorylation, and negative regulation of apoptosis, mainly involving PI3K/AKT and EGFR tyrosine kinase inhibitor resistance signaling pathways. The results of molecular docking showed that the binding energy between the core components and core target of C. deserticola was less than -4.7 kJ/mol. Animal experiment results showed that after intervention with C. deserticola extract, the body weight and colon length of mice significantly increased (P<0.05 or P<0.01), while DAI decreased significantly (P<0.05 or P<0.01). The congestion and edema of colon mucosa were significantly reduced, and the pathological score of colon tissue was significantly decreased (P<0.05 or P<0.01); the levels of IL-6, IL-1β, MPO and TNF-α, as well as the protein expressions of PI3K, phosphorylated PI3K (p-PI3K), EGFR, TNF- α, STAT3, phosphorylated STAT3 (p-STAT3), AKT1, phosphorylated AKT1 (p-AKT1) and SRC in colon tissue were reduced significantly (P<0.05 or P<0.01), while the level of IL-10 was significantly increased in model group (P<0.01). CONCLUSIONS C. deserticola may alleviate IBD by regulating the SRC/EGFR/PI3K/AKT signaling pathway.
10.Mechanism of Morinda officinalis iridoid glycosides alleviates bone deterioration in type II collagen-induced arthritic rats through down-regulating GSK-3β to inhibit JAK2/STAT3 and NF-κ B signaling pathway
Yi SHEN ; Yi-qi SUN ; He-ming LI ; Xin-yuan YE ; Jin-man DU ; Rong-hua BAO ; Quan-long ZHANG ; Lu-ping QIN ; Qiao-yan ZHANG
Acta Pharmaceutica Sinica 2024;59(10):2763-2772
This study aimed to investigate the therapeutic effects of

Result Analysis
Print
Save
E-mail