1.Rehmanniae Radix Iridoid Glycosides Protect Kidneys of Diabetic Mice by Regulating TGF-β1/Smads Signaling Pathway
Hongwei ZHANG ; Ming LIU ; Huisen WANG ; Wenjing GE ; Xuexia ZHANG ; Qian ZHOU ; Huani LI ; Suqin TANG ; Gengsheng LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):56-66
ObjectiveTo investigate the protective effect of Rehmanniae Radix iridoid glycosides (RIG) on the kidney tissue of streptozotocin (STZ)-induced diabetic mice and explore the underlying mechanism. MethodsTwelve of 72 male C57BL/6J mice were randomly selected as the normal group, and the remaining 60 mice were fed with a high-fat diet for six weeks combined with injection of 60 mg·kg-1 STZ for 4 days to model type 2 diabetes mellitus. The successfully modeled mice were randomized into model, metformin (250 mg·kg-1), catalpol (100 mg·kg-1), low-dose RIG (RIG-L, 200 mg·kg-1) and high-dose RIG (RIG-H, 400 mg·kg-1) groups (n=11). Mice in each group were administrated with corresponding drugs, while those in the normal group and model group were administrated with the same dose of distilled water by gavage once a day. After 8 weeks of intervention, an oral glucose tolerance test (OGTT) was performed, and the area under the curve (AUC) was calculated. After mice were sacrificed, both kidneys were collected. The body weight, kidney weight, and fasting blood glucose (FBG) were measured. Biochemical assays were performed to measure the serum levels of triglycerides (TG), total cholesterol (TC), serum creatinine (SCr), and blood urea nitrogen (BUN). Enzyme-linked immunosorbent assay (ELISA) was employed to determine the serum level of fasting insulin (FINS), and the insulin sensitivity index (ISI) and homeostatic model assessment for insulin resistance (HOMA-IR) were calculated. The pathological changes in kidneys of mice were observed by hematoxylin-eosin staining and Masson staining. The immunohistochemical method (IHC) was employed to assess the expression of interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor-α(TNF-α), transforming growth factor-β1 (TGF-β1), and collagen-3 (ColⅢ) in the kidney tissue. The protein levels of TGF-β1, cell signal transduction molecule 3 (Smad3), matrix metalloproteinase-9 (MMP-9), and ColⅢ in kidneys of mice were determined by Western blot. ResultsCompared with the normal group, the model group showcased decreased body weight and ISI (P<0.01), increased kidney weight, FBG, AUC, FINS, HOMA-IR, TC, TG, SCr, and BUN (P<0.01), glomerular hypertrophy, capsular space narrowing, and collagen deposition in the kidney, up-regulated protein levels of IL-1, IL-6, TNF-α, TGF-β1, ColⅢ, and Smad3 (P<0.01), and down-regulated protein level of MMP-9 (P<0.01) in the kidney tissue. Compared with the model group, the treatment groups had no significant difference in the body weight and decreased kidney weight (P<0.05, P<0.01). The FBG level declined in the RIG-H group after treatment for 4-8 weeks and in the metformin, catalpol, and RIG-L groups after treatment for 6-8 weeks (P<0.01). The AUC in the RIG-L, RIG-H, and metformin groups decreased (P<0.05, P<0.01). The levels of TC, SCr, and BUN in the serum of mice in each treatment group became lowered (P<0.05, P<0.01). The level of TG declined in the RIG-L, RIG-H, and metformin groups (P<0.05, P<0.01). The serum level of FINS declined in the catalpol, RIG-L, and metformin groups (P<0.01). Compared with the model group, the treatment groups showed decreased HOMA-IR (P<0.01), increased ISI (P<0.01), alleviated pathological changes in the kidney tissue, and down-regulated expression of IL-1 and TGF-β1. In addition, the protein levels of IL-6, TNF-α, and ColⅢ in the RIG-H and metformin groups and IL-6 and TNF-α in the RIG-L group were down-regulated (P<0.05, P<0.01), and the protein levels of IL-6, TNF-α, and ColⅢ in the catalpol group and ColⅢ in the RIG-L group showed a decreasing trend without statistical difference. The protein levels of TGF-β1, Smad3, and ColⅢ in the RIG-H and metformin groups were down-regulated (P<0.01). Compared with that in the model group, the protein level of MMP-9 was up-regulated in each treatment group (P<0.01). ConclusionRIG can improve the renal structure and function of diabetic mice by regulating the TGF-β1/Smads signaling pathway.
2.Aldehyde Dehydrogenase 2 Gene Mutation May Reduce the Risk of Rupture of Intracranial Aneurysm in Chinese Han Population
Xiheng CHEN ; Siming GUI ; Dachao WEI ; Dingwei DENG ; Yudi TANG ; Jian LV ; Wei YOU ; Jia JIANG ; Jun LIN ; Huijian GE ; Peng LIU ; Yuhua JIANG ; Lixin MA ; Yunci WANG ; Ming LV ; Youxiang LI
Journal of Stroke 2025;27(2):237-249
Background:
and Purpose Ruptured intracranial aneurysms (RIA) are associated with a mortality rate of up to 40% in the Chinese population, highlighting the critical need for targeted treatment interventions for at-risk individuals. Although the impact of aldehyde dehydrogenase 2 (ALDH2) gene mutations on susceptibility to intracranial aneurysms (IA) is well documented, the potential connection between ALDH2 rs671 single-nucleotide polymorphism (SNP) and RIA remains unexplored. Given the increased prevalence of ALDH2 gene mutations among Chinese Han individuals, it is clinically relevant to investigate the link between ALDH2 rs671 SNP and IA rupture.
Methods:
A prospective study was conducted on 546 patients diagnosed with IA to investigate the association between ALDH2 rs671 SNP and the risk of IA rupture.
Results:
The ALDH2 rs671 SNP (ALDH2*2) was significantly more prevalent in patients with unruptured IA (UIA) than in those with RIA (32.56% vs. 18.58%, P=0.004). Multivariate logistic regression analysis revealed that people with the ALDH2 mutation (ALDH2*1/*2 and ALDH2*2/*2 gene type) had a significantly reduced odds ratio (OR=0.49; 95% confidence level [CI] 0.27–0.88; P=0.018) for RIAs. Age-specific subgroup analysis indicated that the ALDH2 mutation provided a stronger protective effect in individuals aged 60 years and above with IA compared to those under 60 years old (OR=0.38 vs. OR=0.52, both P<0.05).
Conclusion
The incidence of RIA was significantly higher in individuals with a normal ALDH2 gene (ALDH2*1/*1) than in those with an ALDH2 rs671 SNP (ALDH2*1/*2 or ALDH2*2/*2). ALDH2 rs671 SNP may serve as a protective factor against RIA in the Chinese Han population.
3.Aldehyde Dehydrogenase 2 Gene Mutation May Reduce the Risk of Rupture of Intracranial Aneurysm in Chinese Han Population
Xiheng CHEN ; Siming GUI ; Dachao WEI ; Dingwei DENG ; Yudi TANG ; Jian LV ; Wei YOU ; Jia JIANG ; Jun LIN ; Huijian GE ; Peng LIU ; Yuhua JIANG ; Lixin MA ; Yunci WANG ; Ming LV ; Youxiang LI
Journal of Stroke 2025;27(2):237-249
Background:
and Purpose Ruptured intracranial aneurysms (RIA) are associated with a mortality rate of up to 40% in the Chinese population, highlighting the critical need for targeted treatment interventions for at-risk individuals. Although the impact of aldehyde dehydrogenase 2 (ALDH2) gene mutations on susceptibility to intracranial aneurysms (IA) is well documented, the potential connection between ALDH2 rs671 single-nucleotide polymorphism (SNP) and RIA remains unexplored. Given the increased prevalence of ALDH2 gene mutations among Chinese Han individuals, it is clinically relevant to investigate the link between ALDH2 rs671 SNP and IA rupture.
Methods:
A prospective study was conducted on 546 patients diagnosed with IA to investigate the association between ALDH2 rs671 SNP and the risk of IA rupture.
Results:
The ALDH2 rs671 SNP (ALDH2*2) was significantly more prevalent in patients with unruptured IA (UIA) than in those with RIA (32.56% vs. 18.58%, P=0.004). Multivariate logistic regression analysis revealed that people with the ALDH2 mutation (ALDH2*1/*2 and ALDH2*2/*2 gene type) had a significantly reduced odds ratio (OR=0.49; 95% confidence level [CI] 0.27–0.88; P=0.018) for RIAs. Age-specific subgroup analysis indicated that the ALDH2 mutation provided a stronger protective effect in individuals aged 60 years and above with IA compared to those under 60 years old (OR=0.38 vs. OR=0.52, both P<0.05).
Conclusion
The incidence of RIA was significantly higher in individuals with a normal ALDH2 gene (ALDH2*1/*1) than in those with an ALDH2 rs671 SNP (ALDH2*1/*2 or ALDH2*2/*2). ALDH2 rs671 SNP may serve as a protective factor against RIA in the Chinese Han population.
4.Aldehyde Dehydrogenase 2 Gene Mutation May Reduce the Risk of Rupture of Intracranial Aneurysm in Chinese Han Population
Xiheng CHEN ; Siming GUI ; Dachao WEI ; Dingwei DENG ; Yudi TANG ; Jian LV ; Wei YOU ; Jia JIANG ; Jun LIN ; Huijian GE ; Peng LIU ; Yuhua JIANG ; Lixin MA ; Yunci WANG ; Ming LV ; Youxiang LI
Journal of Stroke 2025;27(2):237-249
Background:
and Purpose Ruptured intracranial aneurysms (RIA) are associated with a mortality rate of up to 40% in the Chinese population, highlighting the critical need for targeted treatment interventions for at-risk individuals. Although the impact of aldehyde dehydrogenase 2 (ALDH2) gene mutations on susceptibility to intracranial aneurysms (IA) is well documented, the potential connection between ALDH2 rs671 single-nucleotide polymorphism (SNP) and RIA remains unexplored. Given the increased prevalence of ALDH2 gene mutations among Chinese Han individuals, it is clinically relevant to investigate the link between ALDH2 rs671 SNP and IA rupture.
Methods:
A prospective study was conducted on 546 patients diagnosed with IA to investigate the association between ALDH2 rs671 SNP and the risk of IA rupture.
Results:
The ALDH2 rs671 SNP (ALDH2*2) was significantly more prevalent in patients with unruptured IA (UIA) than in those with RIA (32.56% vs. 18.58%, P=0.004). Multivariate logistic regression analysis revealed that people with the ALDH2 mutation (ALDH2*1/*2 and ALDH2*2/*2 gene type) had a significantly reduced odds ratio (OR=0.49; 95% confidence level [CI] 0.27–0.88; P=0.018) for RIAs. Age-specific subgroup analysis indicated that the ALDH2 mutation provided a stronger protective effect in individuals aged 60 years and above with IA compared to those under 60 years old (OR=0.38 vs. OR=0.52, both P<0.05).
Conclusion
The incidence of RIA was significantly higher in individuals with a normal ALDH2 gene (ALDH2*1/*1) than in those with an ALDH2 rs671 SNP (ALDH2*1/*2 or ALDH2*2/*2). ALDH2 rs671 SNP may serve as a protective factor against RIA in the Chinese Han population.
5.Protocol for development of Guideline for Interventions on Cervical Spine Health.
Jing LI ; Guang-Qi LU ; Ming-Hui ZHUANG ; Xin-Yue SUN ; Ya-Kun LIU ; Ming-Ming MA ; Li-Guo ZHU ; Zhong-Shi LI ; Wei CHEN ; Ji-Ge DONG ; Le-Wei ZHANG ; Jie YU
China Journal of Orthopaedics and Traumatology 2025;38(10):1083-1088
Cervical spine health issues not only seriously affect patients' quality of life but also impose a heavy burden on the social healthcare system. Existing guidelines lack sufficient clinical guidance on lifestyle and work habits, such as exercise, posture, daily routine, and diet, making it difficult to meet practical needs. To address this, relying on the China Association of Chinese Medicine, Wangjing Hospital of China Academy of Chinese Medical Sciences took the lead and joined hands with more than ten institutions to form a multidisciplinary guideline development group. For the first time, the group developed the Guidelines for Cervical Spine Health Intervention based on evidence-based medicine methods, strictly following the standardized procedures outlined in the World Health Organization Handbook for Guideline Development and the Guiding Principles for the Formulation/Revision of Clinical Practice Guidelines in China (2022 Edition). This proposal systematically explains the methods and steps for developing the guideline, aiming to make the guideline development process scientific, standardized, and transparent.
Humans
;
Practice Guidelines as Topic/standards*
;
Cervical Vertebrae
;
China
6.Clinical and genetic features of 5 neonates with centronuclear myopathy caused by MTM1 gene variation.
Tian XIE ; Jia-Jing GE ; Zi-Ming ZHANG ; Ding-Wen WU ; Yan-Ping XU ; Li-Ping SHI ; Xiao-Lu MA ; Zheng CHEN
Chinese Journal of Contemporary Pediatrics 2025;27(9):1071-1075
OBJECTIVES:
To study clinical manifestations and gene mutation features of neonates with centronuclear myopathy.
METHODS:
A retrospective analysis was conducted on the medical data of 5 neonates with centronuclear myopathy diagnosed in the Neonatal Intensive Care Unit of Children's Hospital, Zhejiang University School of Medicine from January 2020 to August 2024. The data included gender, gestational age, birth weight, Apgar score, clinical manifestations, creatine kinase level, electromyography, genetic testing results and the outcomes of the infants.
RESULTS:
All 5 male neonates had a history of postpartum asphyxia and resuscitation. They all presented with hypotonia, myasthenia, and respiratory failure; two neonates also had swallowing dysfunction. Of the five neonates, three had normal creatine kinase levels, while two had slightly elevated levels. Electromyography was performed for three neonates, among whom two had myogenic damage. MTM1 gene mutations were identified by genetic testing in all five neonates, including two nonsense mutations and three missense mutations, among which one variant had not been previously reported. Four mutations were inherited from the mother, and the other one was a de novo mutation. The five neonates showed no clinical improvement following treatment, failed weaning from mechanical ventilation, and ultimately died after withdrawal of life-sustaining therapy.
CONCLUSIONS
Centronuclear myopathy caused by MTM1 gene mutation often has a severe phenotype and a poor prognosis, and it should be considered for neonates with hypotonia and myasthenia after birth. Genetic testing should be performed as soon as possible.
Humans
;
Myopathies, Structural, Congenital/genetics*
;
Male
;
Infant, Newborn
;
Retrospective Studies
;
Mutation
;
Female
;
Protein Tyrosine Phosphatases, Non-Receptor/genetics*
7.Impacts of advanced male age on sperm DNA methylation and subsequent development of embryos and offspring.
Wen LIU ; Ge FANG ; Xiao LI ; Shao-Ming LU
National Journal of Andrology 2025;31(2):172-176
Male factors contribute to infertility at roughly the same rate as female factors, and sperm DNA methylation in advanced-aged males directly affects semen parameters and significantly reduces fertility and increases the miscarriage rate of spouses. Many adverse outcomes of reproductive health are associated with advanced reproductive age of men, and few studies are reported on the influence of paternal age on the health of the offspring. The role of advanced age in human sperm DNA methylation variation and mechanism of its subsequent influence on the offspring health remain unclear. Attention should be paid to the influence of reproductive age on pregnancy outcomes in this population. This reviews focuses on the impacts of advanced male age on sperm DNA methylation and consequently on reproductive outcomes and the offspring, with elucidation of its underlying mechanisms, aiming to provide some more useful evidence for solving related clinical problems.
Humans
;
DNA Methylation
;
Male
;
Spermatozoa/metabolism*
;
Female
;
Pregnancy
;
Paternal Age
;
Pregnancy Outcome
;
Embryonic Development
8.Glucocorticoid Discontinuation in Patients with Rheumatoid Arthritis under Background of Chinese Medicine: Challenges and Potentials Coexist.
Chuan-Hui YAO ; Chi ZHANG ; Meng-Ge SONG ; Cong-Min XIA ; Tian CHANG ; Xie-Li MA ; Wei-Xiang LIU ; Zi-Xia LIU ; Jia-Meng LIU ; Xiao-Po TANG ; Ying LIU ; Jian LIU ; Jiang-Yun PENG ; Dong-Yi HE ; Qing-Chun HUANG ; Ming-Li GAO ; Jian-Ping YU ; Wei LIU ; Jian-Yong ZHANG ; Yue-Lan ZHU ; Xiu-Juan HOU ; Hai-Dong WANG ; Yong-Fei FANG ; Yue WANG ; Yin SU ; Xin-Ping TIAN ; Ai-Ping LYU ; Xun GONG ; Quan JIANG
Chinese journal of integrative medicine 2025;31(7):581-589
OBJECTIVE:
To evaluate the dynamic changes of glucocorticoid (GC) dose and the feasibility of GC discontinuation in rheumatoid arthritis (RA) patients under the background of Chinese medicine (CM).
METHODS:
This multicenter retrospective cohort study included 1,196 RA patients enrolled in the China Rheumatoid Arthritis Registry of Patients with Chinese Medicine (CERTAIN) from September 1, 2019 to December 4, 2023, who initiated GC therapy. Participants were divided into the Western medicine (WM) and integrative medicine (IM, combination of CM and WM) groups based on medication regimen. Follow-up was performed at least every 3 months to assess dynamic changes in GC dose. Changes in GC dose were analyzed by generalized estimator equation, the probability of GC discontinuation was assessed using Kaplan-Meier curve, and predictors of GC discontinuation were analyzed by Cox regression. Patients with <12 months of follow-up were excluded for the sensitivity analysis.
RESULTS:
Among 1,196 patients (85.4% female; median age 56.4 years), 880 (73.6%) received IM. Over a median 12-month follow-up, 34.3% (410 cases) discontinued GC, with significantly higher rates in the IM group (40.8% vs. 16.1% in WM; P<0.05). GC dose declined progressively, with IM patients demonstrating faster reductions (median 3.75 mg vs. 5.00 mg in WM at 12 months; P<0.05). Multivariate Cox analysis identified age <60 years [P<0.001, hazard ratios (HR)=2.142, 95% confidence interval (CI): 1.523-3.012], IM therapy (P=0.001, HR=2.175, 95% CI: 1.369-3.456), baseline GC dose ⩽7.5 mg (P=0.003, HR=1.637, 95% CI: 1.177-2.275), and absence of non-steroidal anti-inflammatory drugs use (P=0.001, HR=2.546, 95% CI: 1.432-4.527) as significant predictors of GC discontinuation. Sensitivity analysis (545 cases) confirmed these findings.
CONCLUSIONS
RA patients receiving CM face difficulties in following guideline-recommended GC discontinuation protocols. IM can promote GC discontinuation and is a promising strategy to reduce GC dependency in RA management. (Trial registration: ClinicalTrials.gov, No. NCT05219214).
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Arthritis, Rheumatoid/drug therapy*
;
Glucocorticoids/therapeutic use*
;
Medicine, Chinese Traditional
;
Retrospective Studies
9.Optimized lipid nanoparticles enable effective CRISPR/Cas9-mediated gene editing in dendritic cells for enhanced immunotherapy.
Kuirong MAO ; Huizhu TAN ; Xiuxiu CONG ; Ji LIU ; Yanbao XIN ; Jialiang WANG ; Meng GUAN ; Jiaxuan LI ; Ge ZHU ; Xiandi MENG ; Guojiao LIN ; Haorui WANG ; Jing HAN ; Ming WANG ; Yong-Guang YANG ; Tianmeng SUN
Acta Pharmaceutica Sinica B 2025;15(1):642-656
Immunotherapy has emerged as a revolutionary approach to treat immune-related diseases. Dendritic cells (DCs) play a pivotal role in orchestrating immune responses, making them an attractive target for immunotherapeutic interventions. Modulation of gene expression in DCs using genome editing techniques, such as the CRISPR-Cas system, is important for regulating DC functions. However, the precise delivery of CRISPR-based therapies to DCs has posed a significant challenge. While lipid nanoparticles (LNPs) have been extensively studied for gene editing in tumor cells, their potential application in DCs has remained relatively unexplored. This study investigates the important role of cholesterol in regulating the efficiency of BAMEA-O16B lipid-assisted nanoparticles (BLANs) as carriers of CRISPR/Cas9 for gene editing in DCs. Remarkably, BLANs with low cholesterol density exhibit exceptional mRNA uptake, improved endosomal escape, and efficient single-guide RNA release capabilities. Administration of BLANmCas9/gPD-L1 results in substantial PD-L1 gene knockout in conventional dendritic cells (cDCs), accompanied by heightened cDC1 activation, T cell stimulation, and significant suppression of tumor growth. The study underscores the pivotal role of cholesterol density within LNPs, revealing potent influence on gene editing efficacy within DCs. This strategy holds immense promise for the field of cancer immunotherapy, offering a novel avenue for treating immune-related diseases.
10.Neural Responses to Hypoxic Injury in a Vascularized Cerebral Organoid Model.
Yang LI ; Xin-Yao SUN ; Peng-Ming ZENG ; Zhen-Ge LUO
Neuroscience Bulletin 2025;41(10):1779-1791
Hypoxic injury (HI) in the prenatal period often causes neonatal neurological disabilities. Due to the difficulty in obtaining clinical samples, the molecular and cellular mechanisms remain unclear. Here we use vascularized cerebral organoids to investigate the hypoxic injury phenotype and explore the intercellular interactions between vascular and neural tissues under hypoxic conditions. Our results indicate that fused vascularized cerebral organoids exhibit broader hypoxic responses and larger decreases in panels of neural development-related genes when exposed to low oxygen levels compared to single cerebral organoids. Interestingly, vessels also exhibit neural protective effects on T-box brain protein 2+ intermediate progenitors (IPs), which are markedly lost in HI cerebral organoids. Furthermore, we identify the role of bone morphogenic protein signaling in protecting IPs. Thus, this study has established an in vitro organoid system that can be used to study the contribution of vessels to brain injury under hypoxic conditions and provides a strategy for the identification of intervention targets.
Organoids/pathology*
;
Animals
;
Mice
;
Hypoxia, Brain/metabolism*
;
Brain/blood supply*
;
Neurons/metabolism*

Result Analysis
Print
Save
E-mail