1.Mineralogical studies on iron-containing mineral medicines, Haematitum and Limonitum.
Min LU ; Xiao-Fei WANG ; Cheng-Cheng WANG ; Jing-Xu CHEN ; Hang-Jie ZHU ; Juan LI ; Yan CAO
China Journal of Chinese Materia Medica 2025;50(5):1179-1186
Haematitum and Limonitum are two iron-containing mineral medicines included in the 2020 edition of the Chinese Pharmacopoeia. They have similar main components and major differences in their property, flavor, channel tropism, and clinical uses. In this study, we investigated the surface properties, mineral composition, mineral dissociation, elemental composition, and iron state of Haematitum and Limonitum to explore their mineralogical differences. Scanning electron microscopy(SEM), specific surface and porosity analyzer, X-ray diffractometer(XRD), X-ray photoelectron spectrometer(XPS), and advanced mineral identification and characterization system(AMICS) were used to analyze the mineralogy of Haematitum and Limonitum. The results showed that Haematitum had an angular surface with granular attachments and a specific surface area of 17.04 m~2·g~(-1). In comparison, Limonitum had a smooth and flat surface with a bundled acicular crystal structure and a specific surface area of 46.29 m~2·g~(-1). Haematitum consists of 31 detectable minerals containing 18 elements, with the major element, iron(44.5% Fe~(2+) and 55.5% Fe~(3+)) distributed in 17 minerals, including hematite, iron oxide, knebelite, siderite, and magnesioferrite. Limonitum consists of 32 detectable minerals containing 17 elements, with the major element, iron(14.5% Fe~(2+) and 85.5% Fe~(3+)) distributed in 19 minerals, including limonite, iron oxide, chlorite, and knebelite. In summary, the elemental composition of Haematitum and Limonitum does not differ greatly, but there are large differences in the mineral composition and iron state. The large specific surface area and strong adsorption capacity of Limonitum may be one of the mechanisms of its anti-diarrheal action. The Fe_2O_3 and illite contained in Haematitum and Limonitum may be the key substances for their hemostasis effects. The mineralogical differences are expected to provide a reference for explaining the scientific connotation of mineral medicine and laying a material foundation for studying its mechanism of action.
Iron/analysis*
;
Minerals/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
X-Ray Diffraction
;
Microscopy, Electron, Scanning
;
Photoelectron Spectroscopy
2.Polarized light microscopic mineral phase authentication and health risk assessment of raw and calcined fossil mineral Chinese medicinal material Draconis Os.
Yan-Qiong PAN ; Zheng LIU ; Li-Wen ZHENG ; Ying ZHANG ; Liu ZHOU ; Xi-Long QIAN ; Fang FANG ; Xiao WU ; Sheng-Jin LIU
China Journal of Chinese Materia Medica 2025;50(15):4238-4247
This study aims to investigate the polarized microscopic mineral phase characteristics, inorganic element content, and potential health risks associated with the intake of raw and calcined fossil mineral Chinese medicinal material Draconis Os. Microscopy was employed to observe the mineralogical characteristics of Draconis Os and compare the microscopic features and phase composition of raw and calcined Draconis Os under monochromatic and orthogonal polarized light. Inductively coupled plasma mass spectrometry(ICP-MS) was employed to determine the content of 30 inorganic elements. Health risk assessment was conducted by calculating the single pollution index(P_i), average daily intake of elements for adults(ADI), target hazard quotient(THQ), non-carcinogenic assessment method-hazard quotient(HQ), and the carcinogenic risk of elements(CR). The results indicated that under monochromatic polarized light, the Draconis Os powder sections exhibited light gray-brown to gray-brown irregular fragments, some with undulating textures that were slightly curved. Under crossed polarized light, they appeared dark gray, grayish-white, and yellowish-white. Clear apatite was visible in the ground sections of Draconis Os under crossed polarized light. P_i results indicated that Draconis Os samples were free from contamination and were of good quality. According to the maximum allowable limits of heavy metals stipulated in ISO Traditional Chinese Medicine: Determination of heavy metals in herbal medicines used in Traditional Chinese Medicine, ADI, THQ, HQ, and CR were taken as assessment indicators. Only the THQ value for As(arsenic) in raw Draconis Os was greater than 1, while the THQ values for other heavy metal elements in the Draconis Os samples were all less than 1. The study demonstrates that the primary mineral phase of raw and calcined Draconis Os is apatite, with some samples co-existing with calcite, which can serve as one of the means for quality control of Draconis Os. The elemental analysis results from ICP-MS provide scientific evidence for the safety assessment of Draconis Os, indicating that Draconis Os is safe in clinical application.
Drugs, Chinese Herbal/analysis*
;
Risk Assessment
;
Minerals/chemistry*
;
Fossils
;
Humans
;
Drug Contamination
;
Mass Spectrometry
3.The causal association between circulating zinc, magnesium, and other minerals with autism spectrum disorder: a Mendelian randomization study.
Bing-Quan ZHU ; Sai-Jing CHEN ; Tian-Miao GU ; Si-Run JIN ; Dan YAO ; Shuang-Shuang ZHENG ; Jie SHAO
Chinese Journal of Contemporary Pediatrics 2025;27(9):1098-1104
OBJECTIVES:
To evaluate the causal association between circulating levels of zinc, magnesium, and other minerals and autism spectrum disorder (ASD).
METHODS:
A two-sample Mendelian randomization (MR) analysis was performed using summary statistics from large-scale genome-wide association studies of European populations, including 18 382 ASD cases and 27 969 controls. Genetic data for iron, calcium, and magnesium were obtained from the UK Biobank, and data for zinc and selenium were sourced from an Australian-British cohort. A total of 351 genetic instrumental variables were selected. Causal inference was performed using inverse-variance weighting as the primary analysis method. Sensitivity analyses were performed by Cochran's Q test and MR-PRESSO global test to assess the robustness of the findings.
RESULTS:
No statistically significant causal effect was observed for circulating zinc, magnesium, calcium, selenium, or iron levels on ASD risk (all P>0.05). The odds ratios and 95% confidence intervals from the inverse-variance weighting analysis were 0.934 (0.869-1.003) for zinc, 1.315 (0.971-1.850) for magnesium, 1.055 (0.960-1.159) for calcium, 1.015 (0.953-1.080) for selenium, and 0.946 (0.687-1.303) for iron. Sensitivity analysis revealed significant heterogeneity in the causal association between circulating calcium and ASD (P=0.006), while the effect estimate remained stable after MR-PRESSO correction (P=0.487). The causal effect estimates for the remaining minerals demonstrated good robustness.
CONCLUSIONS
This study did not find significant evidence supporting a causal association between circulating zinc, magnesium, calcium, selenium, or iron levels and ASD risk, providing important clues for the etiology of ASD and precision nutritional interventions.
Humans
;
Mendelian Randomization Analysis
;
Autism Spectrum Disorder/genetics*
;
Magnesium/blood*
;
Zinc/blood*
;
Minerals/blood*
;
Genome-Wide Association Study
;
Selenium/blood*
5.Discrimination of cultivation modes of Dendrobium nobile based on content of mineral elements and ratios of nitrogen stable isotopes.
Ming-Song LI ; Jin-Ling LI ; Zhi ZHAO ; Hua-Lei WANG ; Fu-Lai LUO ; Chun-Li LUO ; Ji-Yong YANG ; Gang DING ; Lang DENG
China Journal of Chinese Materia Medica 2023;48(3):625-635
This study explored the feasibility of mineral element content and ratios of nitrogen isotopes to discriminate the cultivation mode of Dendrobium nobile in order to provide theoretical support for the discrimination of the cultivation mode of D. nobile. The content of 11 mineral elements(N, K, Ca, P, Mg, Na, Fe, Cu, Zn, Mn, and B) and nitrogen isotope ratios in D. nobile and its substrate samples in three cultivation methods(greenhouse cultivation, tree-attached cultivation, and stone-attached cultivation) were determined. According to the analysis of variance, principal component analysis, and stepwise discriminant analysis, the samples of different cultivation types were classified. The results showed that the nitrogen isotope ratios and the content of elements except for Zn were significantly different among different cultivation types of D. nobile(P<0.05). The results of correlation analysis showed that the nitrogen isotope ratios, mineral element content, and effective component content in D. nobile were correlated with the nitrogen isotope ratio and mineral element content in the corresponding substrate samples to varying degrees. Principal component analysis can preliminarily classify the samples of D. nobile, but some samples overlapped. Through stepwise discriminant analysis, six indicators, including δ~(15)N, K, Cu, P, Na, and Ca, were screened out, which could be used to establish the discriminant model of D. nobile cultivation methods, and the overall correct discrimination rates after back-substitution test, cross-check, and external validation were all 100%. Therefore, nitrogen isotope ratios and mineral element fingerprints combined with multivariate statistical analysis could effectively discriminate the cultivation types of D. nobile. The results of this study provide a new method for the identification of the cultivation type and production area of D. nobile and an experimental basis for the quality evaluation and quality control of D. nobile.
Dendrobium
;
Minerals
;
Discriminant Analysis
;
Multivariate Analysis
;
Nitrogen Isotopes
6.Comparison and health risk assessment of mineral elements in stems and leaves of Dendrobium officinale cultivated with conventional method and mycorrhizal fungi.
Jia-Qi WANG ; Li-Xia TIAN ; Xiao-Mei CHEN ; Shun-Xing GUO
China Journal of Chinese Materia Medica 2022;47(21):5824-5831
This study aims to analyze the variation of the content of mineral elements in stems and leaves of Dendrobium officinale cultivated with conventional method and mycorrhizal fungi, which is expected to lay a basis for safety of stems and leaves of D. officinale. A total of 7 samples from Jiangsu, Fujian, Shanghai, and Zhejiang were collected, which were then cultivated with conventional method and mycorrhizal fungi, separately. The content of 17 mineral elements in stems and leaves was measured by inductively coupled plasma-mass spectrometry(ICP-MS), and the content changes of the mineral elements were analyzed. The health risks of Pb, Cd, Hg, and As in stems were assessed by target hazard quotient(THQ). The results showed that the content of polluting elements in stems and leaves of D. officinale was low, and the content in the plants cultivated with mycorrhizal fungi was reduced. The content of K, Ca, Mg, and P was high in stems and leaves of the species, suggesting that cultivation with mycorrhizal fungi improved the content of other elements irregularly. According to the THQ, the safety risk of stems of D. officinale cultivated with either conventional method or mycorrhizal fungi was low, particularly the D. officinale cultivated mycorrhizal fungi. The results indicated that cultivation with mycorrhizal fungi influenced the element content in stems and leaves of D. officinale. It is necessary to study the culture substrate, processing technology, and the mechanism of the increase or decrease in mineral elements of D. officinale in the future.
Dendrobium/chemistry*
;
Mycorrhizae
;
China
;
Plant Leaves/chemistry*
;
Minerals/analysis*
;
Risk Assessment
7.Content of mineral elements in different Artemisia argyi germplasms and their relationship with quality properties.
Chang-Jie CHEN ; Yu-Huan MIAO ; Yan FANG ; Lan-Ping GUO ; Yuan ZENG ; Da-Hui LIU
China Journal of Chinese Materia Medica 2022;47(4):880-888
To clarify the content characteristics of mineral elements in different Artemisia argyi germplasm resources and their relationship with the quality properties of Artemisiae Argyi Folium, this study measured the content of 10 mineral elements including nitrogen(N), phosphorus(P), potassium(K), calcium(Ca), magnesium(Mg), aluminum(Al), manganese(Mn), iron(Fe), copper(Cu), and zinc(Zn) in 100 Artemisia argyi germplasm samples. Besides, their relationship with the quality properties of Artemisiae Argyi Folium was explored by correlation analysis, path analysis, and cluster analysis. The results demonstrated that the variation coefficient of the 10 mineral elements in Artemisiae Argyi Folium ranged from 12.23% to 64.38%, and the genetic diversity index from 0.97 to 3.09. The genetic diversities of N, P, and Zn were obvious. As revealed by the correlation analysis, N, P, and K showed strong positive correlations with each other. Except that Mg and Al were negatively correlated, Ca, Mg, Al, Mn, Fe, Cu, and Zn were positively correlated. The correlation analysis of mineral elements with the quality properties of Artemisiae Argyi Folium proved the significant correlations of 17 pairs of characters. According to the path analysis, P, K, Ca, and Mn greatly affected the yield of Artemisiae Argyi Folium, P, K, and Mg the output rate of moxa, N, P, and K the content of total volatile oil, P and K the content of eucalyptol, and P, K, and Ca the content of eupatilin. The 100 germplasm samples were clustered into three groups. Specifically, in cluster Ⅰ, the enrichment capacity of P, K, and Mg elements was strong, and the comprehensive properties of mineral elements were better, implying good development potential. Ca, Mn, Fe, and Zn elements in cluster Ⅱ and N and Al in cluster Ⅲ displayed strong enrichment capacities. This study has provided new ideas for resource evaluation and variety breeding of A. argyi and also reference for fertilizer application.
Artemisia/genetics*
;
Iron
;
Minerals/analysis*
;
Plant Breeding
;
Plant Leaves/chemistry*
8.Effects of mineral Chinese medicine Chloriti Lapis on contents of metal elements in plasma and lung tissue of acute exacerbation of chronic obstructive pulmonary disease(AECOPD) rats.
Sheng-Jin LIU ; Yu-Lu MA ; Fang FANG ; Rui WANG ; Chen-Xiao SHAN ; Yong BIAN ; Wen-Guo YANG ; Hui YAN ; Zhi-Jie ZHANG ; AO WULIJI ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2021;46(14):3694-3704
The effects of Chloriti Lapis on metal elements in plasma and lung tissue of acute exacerbation of chronic obstructive pulmonary disease( AECOPD) rats were studied. The rat AECOPD model with phlegm heat syndrome was established by smoking combined with Klebsiella pneumoniae infection. After the rats were treated by Chloriti Lapis,the contents of metal elements in plasma and lung tissue were determined by inductively coupled plasma-optical emission spectroscopy( ICP-OES) and inductively coupled plasma mass spectrometry( ICP-MS). The changes in the contents of metal elements were analyzed by SPSS 18. 0. Further,the correlations of differential metal elements( including Cu/Zn ratio) with differential metabolites in plasma,lung tissue and urine of AECOPD rats treated with Chloriti Lapis were analyzed. The results showed that Chloriti Lapis significantly up-regulated the contents of Fe,Al,Mn,Cu,Zn,Sn( P<0. 05),V,Co( P< 0. 01) and Cu/Zn ratio( P< 0. 05),and significantly down-regulated the contents of Ti( P< 0. 05)and Pb( P<0. 05) in the model rat plasma. It significantly increased the content of Be( P<0. 05) and decreased the contents of Mg,Ti and Al( P<0. 01) in model rat lung tissue. The element profiles of normal group,model group and Chloriti Lapis group can be well separated. Chloriti Lapis group and other groups were clustered into two categories. The taurine in plasma and phytosphingosine in lung tissue had the strongest correlations with differential metal elements. The Fe,Al,Mg,Be,Ti,V,Mn,Cu,Zn,Sn,and Co in Chloriti Lapis may directly or indirectly participate in the intervention of AECOPD rats. This group of metal elements may be the material basis of Chloriti Lapis acting on AECOPD rats,and reduce the Cu/Zn value in vivo. It was further confirmed that Chloriti Lapis could interfere with the metabolic pathways of taurine and hypotaurine in plasma and urine as well as the sphingolipid metabolism pathway in lung tissue of AECOPD rats. In addition,this study confirmed that long-term smoking can cause high-concentration Cd accumulation in the lung and damage the lung tissue.
Animals
;
Lung
;
Medicine, Chinese Traditional
;
Minerals
;
Pulmonary Disease, Chronic Obstructive
;
Rats
;
Spectrum Analysis
;
Trace Elements/analysis*
9.Efficacy of Essential Trace Elements Supplementation on Mineral Composition, Sperm Characteristics, Antioxidant Status, and Genotoxicity in Testis of Tebuconazole-treated Rats.
Hajer BEN SAAD ; Fatma BEN ABDALLAH ; Intidhar BKHAIRIA ; Ons BOUDAWARA ; Moncef NASRI ; Ahmed HAKIM ; Ibtissem BEN AMARA
Biomedical and Environmental Sciences 2020;33(10):760-770
Objective:
This research was performed to evaluate the effect of tebuconazole (TBZ) on reproductive organs of male rats and to assess the protective role of combined essential trace elements in alleviating the detrimental effect of TBZ on male reproductive function.
Methods:
For this purpose, 48 rats were exposed to 100 mg/kg TBZ, TBZ supplemented with zinc (Zn), selenium (Se), copper (Cu), and iron (Fe), TBZ + (Se + Zn); TBZ + Cu; or TBZ + Fe. The experiment was conducted for 30 consecutive days.
Results:
TBZ caused a significant perturbation in mineral levels and reduction in reproductive organs weights, plasma testosterone level, and testicular antioxidant enzyme activities. The TBZ-treated group also showed a significant increase in sperm abnormalities (count, motility, and viability percent), plasma follicle-stimulating hormone and luteinizing hormone concentrations, lipid peroxidation, protein oxidation, and severe DNA degradation in comparison with the controls. Histopathologically, TBZ caused testis impairments. Conversely, treatment with trace elements, in combination or alone, improved the reproductive organ weights, sperm characteristics, TBZ-induced toxicity, and histopathological modifications in testis.
Conclusion
TBZ exerts significant harmful effects on male reproductive system. The concurrent administration of trace elements reduces testis dysfunction, fertility, and toxicity induced by TBZ.
Animal Feed/analysis*
;
Animals
;
Antioxidants/metabolism*
;
Diet
;
Dietary Supplements/analysis*
;
Fungicides, Industrial/adverse effects*
;
Male
;
Minerals/metabolism*
;
Mutagenicity Tests
;
Rats
;
Rats, Wistar
;
Spermatozoa/physiology*
;
Testis/physiology*
;
Trace Elements/metabolism*
;
Triazoles/adverse effects*
10.Study on quality status of mineral medicine Calamina.
Guang-Feng SONG ; Zhi-Jie ZHANG ; Rao-Rao LI ; Chen SONG ; Rui-Chao LIN
China Journal of Chinese Materia Medica 2020;45(2):352-360
In this paper, some quality problems of mineral medicine Calamina and calcined Calamina have been discussed after determination and analysis of the quality parameters of a large number of market samples, and the countermeasures are put forward. According to the XRD results, as well as the results of tests included in Chinese Pharmacopoeia(2015 edition), the authenticity of Calamina and calcined Calamina samples were identified. The content of zinc oxide in samples were determined by the method of determination in Chinese Pharmacopoeia. Individually, inductively coupled plasma mass spectrometry(ICP-MS), inductively coupled plasma atomic emission spectrometry(ICP-AES) and atomic fluorescence spectrometry(AFS) methods were used for the determination of impurity elements and harmful elements in Calamina and calcined Calamina samples. Four kinds of impurity elements of magnesium(Mg), iron(Fe), aluminum(Al), calcium(Ca) and five harmful elements such as lead(Pb), cadmium(Cd), arsenic(As), copper(Cu), mercury(Hg) were measured. The study showed that: ① Fake Calamina products on the market were overflowing; ② The mineral origin of the mainstream Calamina in the market is inconsistent with that stipulated in Chinese Pharmacopoeia(2015 edition); ③ The contents of harmful elements Pb and Cd in Calamina and calcined Calamina are generally higher, while the contents of harmful elements As and Cu in some inferior Calaminae are higher; ④ Parts of calcined Calamina were improperly or inadequately processed. In view of these quality problems, the countermeasures are put forward as follows: ① It is suggested that hydrozincite should be approved as the mineral source of Calamina, and be included by Chinese Pharmacopoeia; ② Strengthen the research on the specificity of Calamina identification methods to improve the quality control level; ③ Strengthen the research on the processing of Calamina, and formulate the limit standards for the content of Pb and Cd in Calamina; ④ Carry out research on the artificial synthesis of Calamina and calcined Calamina, in order to cope with the current shortage of Calamina resources and ensure the sustainable development of Calamina medicinal materials.
Arsenic
;
Cadmium
;
Copper
;
Drug Combinations
;
Drugs, Chinese Herbal/standards*
;
Ferric Compounds/standards*
;
Iron
;
Lead
;
Medicine, Chinese Traditional
;
Mercury
;
Minerals
;
Quality Control
;
Trace Elements/analysis*
;
Zinc Oxide/standards*

Result Analysis
Print
Save
E-mail