1.Efficacy and Mechanism of Action of Ermiao Situ Decoction in Modulating JAK/STAT Pathway in Rats with Damp-heat Eczema
Kangning HAN ; Junjie HU ; Juan LI ; Min ZHANG ; Xian ZHOU ; Songlin LIU ; Xin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):37-47
ObjectiveUltra performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) coupled with network pharmacology and molecular docking was utilized to explore the efficacy and mechanism of action of Ermiao Situ decoction on rats with damp-heat eczema. MethodsA rat model of damp-heat eczema was established by artificial climate chamber intervention combined with sensitization induction by dinitrochlorobenzene (DNCB), and it was randomly divided into the normal group, the model group, the medium- and high-dose groups of Ermiao Situ decoction (3.40 g·kg-1 and 6.80 g·kg-1), and the prednisone acetate group (2.51 mg·kg-1), with eight rats in each group, totalling 46 rats, of which six rats were tested with the drug-containing serum. The chemical analysis of drug-containing serum from rats was carried out by UPLC-Q-TOF-MS/MS, combined with network pharmacology for the prediction of key components, core targets, and signaling pathways, and molecular docking experiments were performed by CB-Dock2 online website. The pharmacological effects of Ermiao Situ decoction in the treatment of damp-heat eczema were investigated by epitaxial indexes combined with the pathologic tissue staining method. The serum levels of gastrin (GAS), interleukin-4 (IL-4), and interleukin-13 (IL-13) were measured by enzyme-linked immunosorbent assay (ELISA). Interleukin-6 (IL-6), Janus kinase 1 (JAK1), phosphorylated (p)-JAK1, signal transduction and activation of transcription factor 3 (STAT3), and p-STAT3 protein expression level was determined by Western bolt. ResultsA total of 19 active ingredients were detected in drug-containing serum samples of rats, which were predicted to act on 198 targets for the treatment of damp-heat eczema, among which the key ingredients included rhodopsin, huangpai alkaloids, and quercetin, and the main core targets included STAT3, tumor necrosis factor (TNF), and IL-6, which were mainly involved in the cancer signaling pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase (Akt) signaling pathway, T helper 17 (Th17) cell differentiation signaling pathway, and JAK/STAT signaling pathway. The molecular docking results suggested that the key components had strong binding activities with the core targets IL-6, JAK1, and STAT3 in the JAK/STAT signaling pathway. The results of animal experiments showed that compared with those in the normal group, rats in the model group were depressed. They had loose hair, loose stools, epidermal oozing, vesiculation, and generation of thick scabs in the form of scales, decreased body weight, increased anus temperature and water intake, and increased indexes of the spleen, thymus gland, and stomach (P<0.05, P<0.01), and the lesion tissue could be seen to be hyperkeratotic, with the aggregation of inflammatory cells and nonsignificant separation of epidermis and dermis. The gastric mucosa was thinned, deficient, and structurally disorganized, and obvious inflammatory cell aggregation was seen. The levels of GAS, IL-4, and IL-13 in serum were significantly reduced (P<0.05, P<0.01), and the protein expression levels of IL-6, JAK1, p-JAK1, and p-STAT3 in the lesion tissue were significantly increased (P<0.05, P<0.01). Compared with those in the model group, rats in each administration group had stable mental states, formed feces, a clean perianal area, and basically normal epidermis. Only a small amount of scaly scabs existed, and the rats had body weight increased, with decreased anal temperature and water intake, as well as decreased spleen, thymus, and gastric indexes (P<0.05, P<0.01). Epidermal thickness was decreased, and epidermal and dermal separation boundaries were obvious, but hyperkeratotic and accumulation of inflammatory cells could still be seen. The thickness of gastric mucosa increased, and the structure was restored to varying degrees. The levels of GAS, IL-4, and IL-13 content in the serum of rats were increased to varying degrees, and the protein expression levels of IL-6, JAK1, p-JAK1, and p-STAT3 in the dermal lesion tissue were significantly decreased (P<0.05, P<0.01). ConclusionErmiao Situ decoction may exert therapeutic effects on rats with damp-heat eczema by modulating the JAK/STAT signaling pathway.
2.Exploration of the antidepressant machanism of Shugan hewei tang based on metabolomics of PFC-NAc-VTA neural circuit
Xinyue QU ; Junjie HU ; Juan LI ; Min ZHANG ; Xian ZHOU ; Songlin LIU ; Xin CHEN
China Pharmacy 2025;36(10):1172-1178
OBJECTIVE To investigate the antidepressant mechanism of Shugan hewei tang (SGHWT) based on the metabolomics of prefrontal cortex (PFC)-nucleus accumbens (NAc)-ventral tegmental area (VTA) neural circuit. METHODS Male SD rats were randomly divided into blank group, model group, SGHWT low-, medium- and high-dose groups [3.67, 7.34, 14.68 g/(kg·d), by raw material], and fluoxetine group [1.58 mg/(kg·d), positive control], with 12 rats in each group. Except for the blank group, the depression model was established by chronic unpredictable mild stress combined with individual cage housing in the remaining groups, and the corresponding drug solution or normal saline was administered via gavage during modeling, once a day, for 6 consecutive weeks. After the last administration, the body weight, sucrose preference rate, total moving distance, frequency into the center and immobility time of rats in each group were detected. Samples of PFC, NAc and VTA areas of rats in the blank group, model group, SGHWT medium-dose group and fluoxetine positive control groups were collected,and their histomorphological features were observed, and non-targeted metabolomics analysis (except for fluoxetine group)were performed and validated. RESULTS Compared with model group, the cytolysis, structural damage and other pathological damages in three brain regions of rats were significantly alleviated in each drug group, while their body weight, sucrose preference rate, total moving distance and frequency into the center were all significantly higher or longer (P<0.05), and immobility time was significantly shorter (P<0.05). The results of non-targeted metabolomics showed that a total of 78 endogenous differential metabolites were identified, with 40, 35 and 24 in the PFC, NAc and VTA regions respectively, mainly involved in amino acid, lipid and sphingolipid metabolism. The results of metabolic pathway enrichment analysis showed that SGHWT affected the neural circuits of depressed rats by regulating sphingolipid metabolism, alanine, aspartic acid and glutamic acid metabolism, saturated fatty acid biosynthesis, among which alanine, aspartic acid and glutamic acid metabolism was predominantly involved. Validation experiments showed that SGHWT significantly increased the phosphorylation levels of protein kinase B (Akt) and mammalian target of rapamycin (mTOR), and decreased the protein expression of N-methyl-D-aspartic acid receptor 1 (NMDAR1) in the NAc region of rats. CONCLUSIONS SGHWT significantly improves the depression-like behavior and attenuates pathological damage of PFC-NAc-VTA neural circuit of model rats, the mechanism of which is associated with inhibiting NMDAR1 expression and activating the Akt/mTOR signaling pathway.
3.An analysis of the seasonal epidemic characteristics of influenza in Kunming City of Yunnan Province from 2010 to 2024
Zexin HU ; Min DAI ; Wenlong LI ; Minghan WANG ; Xiaowei DENG ; Yue DING ; Hongjie YU ; Juan YANG ; Hong LIU
Shanghai Journal of Preventive Medicine 2025;37(8):643-648
ObjectiveTo characterize the seasonal patterns of influenza in Kunming City, Yunnan Province before, during, and after the COVID-19 pandemic, and provide scientific evidence for optimizing influenza prevention and control strategies. MethodsInfluenza-like illness (ILI) and etiological surveillance data for influenza from the 14th week of 2010 to the 13th week of 2024 in Kunming City of Yunnan Province were collected. Harmonic regression models were constructed to analyze the epidemic characteristics and seasonal patterns of influenza before (2010/2011‒2019/2020 influenza seasons), during (2020/2021‒2022/2023 influenza seasons), and after (2023/2024 influenza season) the COVID-19 pandemic. ResultsBefore the COVID-19 pandemic, influenza in Kunming City mainly exhibited an annual cyclic pattern without a significant semi-annual periodicity, peaking from December to February of the next year, with an epidemic duration of 20‒30 weeks. During the pandemic, influenza seasonality shifted, with an increase in semi-annual periodicity and an approximate one month delay in annual peaks. However, after the pandemic, the annual amplitude of influenza increased compared with that before the pandemic, and the epidemic duration extended by about one month. Although the annual peak largely reverted to the pre-pandemic levels, the annual peaks for different influenza subtypes/lineages had not fully recovered. ConclusionInfluenza seasonality in Kunming City underwent substantial alterations following the COVID-19 pandemic and has not yet fully reverted to pre-pandemic levels. Continuous surveillance on different subtypes/lineages of influenza viruses remains essential, and prevention and control strategies should be adjusted and optimized in a timely manner based on current epidemic trends.
4.Biomarkers of hepatotoxicity in rats induced by aqueous extract of Dictamni Cortex based on urine metabolomics.
Hui-Juan SUN ; Rui GAO ; Meng-Meng ZHANG ; Ge-Yu DENG ; Lin HUANG ; Zhen-Dong ZHANG ; Yu WANG ; Fang LU ; Shu-Min LIU
China Journal of Chinese Materia Medica 2025;50(9):2526-2538
This paper aimed to use non-targeted urine metabolomics to reveal the potential biomarkers of toxicity in rats with hepatic injury induced by aqueous extracts of Dictamni Cortex(ADC). Forty-eight SD rats were randomly assigned to a blank group and high-dose, medium-dose, and low-dose ADC groups, with 12 rats in each group(half male and half female), and they were administered orally for four weeks. The hepatic injury in SD rats was assessed by body weight, liver weight/index, biochemical index, L-glutathione(GSH), malondialdehyde(MDA), and pathological alterations. The qPCR was utilized to determine the expression of metabolic enzymes in the liver and inflammatory factors. Differential metabolites were screened using principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA), followed by a metabolic pathway analysis. The Mantel test was performed to assess differential metabolites and abnormally expressed biochemical indexes, obtaining potential biomarkers. The high-dose ADC group showed a decrease in body weight and an increase in liver weight and index, resulting in hepatic inflammatory cell infiltration and hepatic steatosis. In addition, this group showed elevated levels of MDA, cytochrome P450(CYP) 3A1, interleukin-1β(IL-1β), and tumor necrosis factor-α(TNF-α), as well as lower levels of alanine transaminase(ALT) and GSH. A total of 76 differential metabolites were screened from the blank and high-dose ADC groups, which were mainly involved in the pentose phosphate pathway, tryptophan metabolism, purine metabolism, pentose and glucuronic acid interconversion, galactose metabolism, glutathione metabolism, and other pathways. The Mantel test identified biomarkers of hepatotoxicity induced by ADC in SD rats, including glycineamideribotide, dIDP, and galactosylglycerol. In summary, ADC induced hepatotoxicity by disrupting glucose metabolism, ferroptosis, purine metabolism, and other pathways in rats, and glycineamideribotide, dIDP, and galactosylglycerol could be employed as the biomarkers of its toxicity.
Animals
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Metabolomics
;
Biomarkers/metabolism*
;
Liver/metabolism*
;
Drugs, Chinese Herbal/adverse effects*
;
Female
;
Chemical and Drug Induced Liver Injury/metabolism*
;
Glutathione/metabolism*
;
Humans
5.Identification and expression analysis of AP2/ERF family members in Lonicera macranthoides.
Si-Min ZHOU ; Mei-Ling QU ; Juan ZENG ; Jia-Wei HE ; Jing-Yu ZHANG ; Zhi-Hui WANG ; Qiao-Zhen TONG ; Ri-Bao ZHOU ; Xiang-Dan LIU
China Journal of Chinese Materia Medica 2025;50(15):4248-4262
The AP2/ERF transcription factor family is a class of transcription factors widely present in plants, playing a crucial role in regulating flowering, flower development, flower opening, and flower senescence. Based on transcriptome data from flower, leaf, and stem samples of two Lonicera macranthoides varieties, 117 L. macranthoides AP2/ERF family members were identified, including 14 AP2 subfamily members, 61 ERF subfamily members, 40 DREB subfamily members, and 2 RAV subfamily members. Bioinformatics and differential gene expression analyses were performed using NCBI, ExPASy, SOMPA, and other platforms, and the expression patterns of L. macranthoides AP2/ERF transcription factors were validated via qRT-PCR. The results indicated that the 117 LmAP2/ERF members exhibited both similarities and variations in protein physicochemical properties, AP2 domains, family evolution, and protein functions. Differential gene expression analysis revealed that AP2/ERF transcription factors were primarily differentially expressed in the flowers of the two L. macranthoides varieties, with the differentially expressed genes mainly belonging to the ERF and DREB subfamilies. Further analysis identified three AP2 subfamily genes and two ERF subfamily genes as potential regulators of flower development, two ERF subfamily genes involved in flower opening, and two ERF subfamily genes along with one DREB subfamily gene involved in flower senescence. Based on family evolution and expression analyses, it is speculated that AP2/ERF transcription factors can regulate flower development, opening, and senescence in L. macranthoides, with ERF subfamily genes potentially serving as key regulators of flowering duration. These findings provide a theoretical foundation for further research into the specific functions of the AP2/ERF transcription factor family in L. macranthoides and offer important theoretical insights into the molecular mechanisms underlying floral phenotypic differences among its varieties.
Plant Proteins/chemistry*
;
Gene Expression Regulation, Plant
;
Transcription Factors/chemistry*
;
Lonicera/classification*
;
Flowers/metabolism*
;
Phylogeny
;
Gene Expression Profiling
;
Multigene Family
6.Associations of Ureaplasma urealyticum infection with male infertility and intrauterine insemination outcomes.
Yang-Yang WAN ; Xiao-Yun SHI ; Wen-Jing LIU ; Shun BAI ; Xin CHEN ; Si-Yao LI ; Xiao-Hua JIANG ; Li-Min WU ; Xian-Sheng ZHANG ; Juan HUA
Asian Journal of Andrology 2025;27(2):219-224
Ureaplasma urealyticum (UU) is one of the most commonly occurring pathogens associated with genital tract infections in infertile males, but the impact of seminal UU infection in semen on intrauterine insemination (IUI) outcomes is poorly understood. We collected data from 245 infertile couples who underwent IUI at The First Affiliated Hospital of USTC (Hefei, China) between January 2021 and January 2023. The subjects were classified into two groups according to their UU infection status: the UU-positive group and the UU-negative group. We compared semen parameters, pregnancy outcomes, and neonatal birth outcomes to investigate the impact of UU infection on IUI outcomes. There were no significantly statistical differences in various semen parameters, including semen volume, sperm concentration, total and progressive motility, sperm morphology, leukocyte count, the presence of anti-sperm antibody, and sperm DNA fragmentation index (DFI), between the UU-positive and UU-negative groups of male infertile patients (all P > 0.05). However, the high DNA stainability (HDS) status of sperm differed between the UU-positive and UU-negative groups, suggesting that seminal UU infection may affect sperm nuclear maturation ( P = 0.04). Additionally, there were no significant differences in pregnancy or neonatal birth outcomes between the two groups (all P > 0.05). These results suggest that IUI remains a viable and cost-effective option for infertile couples with UU infection who are facing infertility issues.
Humans
;
Male
;
Ureaplasma Infections/complications*
;
Female
;
Infertility, Male/therapy*
;
Ureaplasma urealyticum/isolation & purification*
;
Pregnancy
;
Adult
;
Pregnancy Outcome
;
Semen Analysis
;
Insemination, Artificial
;
Semen/microbiology*
;
China
7.Molecular Pathogenic Mechanism Study of Two Cases of Inherited Dysfibrinogenemia.
Min WANG ; Tian-Ping CHEN ; Ao-Shuang JIANG ; Cheng-Lin ZHU ; Nan WEI ; Li-Juan ZHU ; Li-Jun QU ; Hong-Jun LIU
Journal of Experimental Hematology 2025;33(1):187-192
OBJECTIVE:
To analyze two families with inherited dysfibrinogenemia, and explore the molecular pathogenic mechanisms.
METHODS:
The coagulation indexes of the probands and their family members were detected. The FGA, FGB, and FGG exons and their flanking sequences were amplified by PCR, and the mutation sites were identified by sequencing. SIFT, PolyPhen2, LRT, ReVe, MutationTaster, phyloP, and phastCons bioinformatics software were used to predict the functional impact of the mutation sites. Protein structure and amino acid conservation analysis of the variant were conducted using PyMOL and Clustal X software.
RESULTS:
The thrombin time (TT) of the proband in family 1 was prolonged to 37.00 s, and Fg∶C decreased to 0.52 g/L. The TT of the proband in family 2 was 20.30 s, and Fg∶C was 1.00 g/L, which was lower than the normal range. Genetic analysis revealed that the proband in family 1 had a heterozygous mutation c.80T>C in FGA, resulting in the substitution of phenylalanine 27 with serine (Phe27Ser). The proband in family 2 had a heterozygous mutation c.1007T>A in FGG, resulting in the substitution of methionine 336 with lysine (Met336Lys). Bioinformatics software prediction analysis indicated that both mutations were deleterious variants. PyMOL mutation models revealed that the Aα chain mutation (Phe27Ser) in family 1 and γ chain mutation (Met336Lys) in family 2 resulted in alterations in spatial structure and reduced protein stability. Clustal X results showed that both Aα Phe27 and γMet336 were highly conserved across homologous species.
CONCLUSION
Heterozygous mutations of FGA gene c.80T>C and FGG gene c.1007T>A are both pathogenic variants, causing inherited dysfibrinogenemia.
Female
;
Humans
;
Male
;
Afibrinogenemia/genetics*
;
Fibrinogen/genetics*
;
Heterozygote
;
Mutation
;
Pedigree
8.The Molecular Mechanism of HCQ Reversing Immune Mediators Dysregulation in Severe Infection after Chemotherapy in Acute Myeloid Leukemia and Inducing Programmed Death of Leukemia Cells.
Qing-Lin XU ; Yan-Quan LIU ; He-Hui ZHANG ; Fen WANG ; Zuo-Tao LI ; Zhi-Min YAN ; Shu-Juan CHEN ; Hong-Quan ZHU
Journal of Experimental Hematology 2025;33(4):931-938
OBJECTIVE:
To explore the effects of hydroxychloroquine (HCQ) on immune mediators dysregulation in severe infection after chemotherapy in acute myeloid leukemia (AML) and its molecular mechanism.
METHODS:
Bone marrow or peripheral blood samples of 36 AML patients with severe infection (AML-SI) and 29 AML patients without infection (AML-NI) after chemotherapy were collected from the First Affiliated Hospital of Gannan Medical University from August 2022 to June 2023. In addition, the peripheral blood of 21 healthy subjects from the same period in our hospital was selected as the control group. The mRNA expressions of CXCL12, CXCR4 and CXCR7 were detected by RT-qPCR technology, and the levels of IL-6, IL-8 and TNF-α were detected by ELISA. Leukemia-derived THP-1 cells were selected and constructed as AML disease model. At the same time, bone marrow mesenchymal stem cells (BM-MSCs) from AML-SI patients were co-cultured with THP-1 cells and divided into Mono group and Co-culture group. THP-1 cells were treated with different concentration gradients of HCQ. The cell proliferation activity was subsequently detected by CCK-8 method and apoptosis was detected by Annexin V/PI double staining flow cytometry. ELISA was used to detect the changes of IL-6, IL-8 and TNF-α levels in the supernatant of the cell co-culture system, RT-qPCR was used to detect the mRNA expression changes of the core members of the CXCL12-CXCR4/7 regulatory axis, and Western blot was used to detect the expressions of apoptosis regulatory molecules and related signaling pathway proteins.
RESULTS:
CXCL12, CXCR4, CXCR7, as well as IL-6, IL-8, and TNF-α were all abnormally increased in AML patients, and the increases were more significant in AML-SI patients (P <0.01). Furthermore, there were statistically significant differences between AML-NI patients and AML-SI patients (all P <0.05). HCQ could inhibit the proliferation and induce the apoptosis of THP-1 cells, but the low concentration of HCQ had no significant effect on the killing of THP-1 cells. When THP-1 cells were co-cultured with BM-MSCs of AML patients, the levels of IL-6, IL-8 and TNF-α in the supernatance of Co-culture group were significantly higher than those of Mono group (all P <0.01). After HCQ intervention, the levels of IL-6, IL-8 and TNF-α in cell culture supernatant of Mono group were significantly decreased compared with those before intervention (all P <0.01). Similarly, those of Co-culture group were also significantly decreased (all P <0.001). However, the expression of the core members of the CXCL12-CXCR4/7 regulatory axis was weakly affected by HCQ. HCQ could up-regulate the expression of pro-apoptotic protein Bax, down-regulate the expression of anti-apoptotic protein Bcl-2, as well as simultaneously promote the hydrolytic activation of Caspase-3 when inhibiting the activation level of TLR4/NF-κB pathway, then induce the programmed death of THP-1 cells after intervention.
CONCLUSION
The core members of CXCL12-CXCR4/7 axis and related cytokines may be important mediators of severe infectious immune disorders in AML patients. HCQ can inhibit cytokine levels to reverse immune mediators dysregulation and suppress malignant biological characteristics of leukemia cells. The mechanisms may be related to regulating the expression of Bcl-2 family proteins, hydrolytically activating Caspase-3 and inhibiting the activation of TLR4/NF-κB signaling pathway.
Humans
;
Leukemia, Myeloid, Acute/immunology*
;
Hydroxychloroquine/pharmacology*
;
Receptors, CXCR4/metabolism*
;
Apoptosis/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Chemokine CXCL12/metabolism*
;
Interleukin-8/metabolism*
;
Interleukin-6/metabolism*
;
Receptors, CXCR/metabolism*
;
Mesenchymal Stem Cells
;
THP-1 Cells
9.Berg Balance Scale score is a valuable predictor of all-cause mortality among acute decompensated heart failure patients.
Yu-Xuan FAN ; Jing-Jing CHENG ; Zhi-Qing FAN ; Jing-Jin LIU ; Wen-Juan XIU ; Meng-Yi ZHAN ; Lin LUO ; Guang-He LI ; Le-Min WANG ; Yu-Qin SHEN
Journal of Geriatric Cardiology 2025;22(6):555-562
OBJECTIVE:
To investigate possible associations between physical function assessment scales, such as Short Physical Performance Battery (SPPB) and Berg Balance Scale (BBS), with all-cause mortality in acute decompensated heart failure (ADHF) patients.
METHODS:
A total of 108 ADHF patients were analyzed from October 2020 to October 2022, and followed up to May 2023. The association between baseline clinical characteristics and all-cause mortality was analyzed by univariate Cox regression analysis, while for SPPB and BBS, univariate Cox regression analysis was followed by receiver operating characteristic curves, in which the area under the curve represented their predictive accuracy for all-cause mortality. Incremental predictive values for both physical function assessments were measured by calculating net reclassification index and integrated discrimination improvement scores. Optimal cut-off value for BBS was then identified using restricted cubic spline plots, and survival differences below and above that cut-off were compared using Kaplan-Meier survival curves and the log-rank test. The clinical utility of BBS was measured using decision curve analysis.
RESULTS:
For baseline characteristics, age, female, blood urea nitrogen, as well as statins, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, or angiotensin receptor-neprilysin inhibitors, were predictive for all-cause mortality for ADHF patients. With respect to SPPB and BBS, higher scores were associated with lower all-cause mortality rates for both assessments; similar area under the curves were measured for both (0.774 for SPPB and 0.776 for BBS). Furthermore, BBS ≤ 36.5 was associated with significantly higher mortality, which was still applicable even adjusting for confounding factors; BBS was also found to have great clinical utility under decision curve analysis.
CONCLUSIONS
BBS or SPPB could be used as tools to assess physical function in ageing ADHF patients, as well as prognosticate on all-cause mortality. Moreover, prioritizing the improvement of balance capabilities of ADHF patients in cardiac rehabilitation regimens could aid in lowering mortality risk.
10.Glucocorticoid Discontinuation in Patients with Rheumatoid Arthritis under Background of Chinese Medicine: Challenges and Potentials Coexist.
Chuan-Hui YAO ; Chi ZHANG ; Meng-Ge SONG ; Cong-Min XIA ; Tian CHANG ; Xie-Li MA ; Wei-Xiang LIU ; Zi-Xia LIU ; Jia-Meng LIU ; Xiao-Po TANG ; Ying LIU ; Jian LIU ; Jiang-Yun PENG ; Dong-Yi HE ; Qing-Chun HUANG ; Ming-Li GAO ; Jian-Ping YU ; Wei LIU ; Jian-Yong ZHANG ; Yue-Lan ZHU ; Xiu-Juan HOU ; Hai-Dong WANG ; Yong-Fei FANG ; Yue WANG ; Yin SU ; Xin-Ping TIAN ; Ai-Ping LYU ; Xun GONG ; Quan JIANG
Chinese journal of integrative medicine 2025;31(7):581-589
OBJECTIVE:
To evaluate the dynamic changes of glucocorticoid (GC) dose and the feasibility of GC discontinuation in rheumatoid arthritis (RA) patients under the background of Chinese medicine (CM).
METHODS:
This multicenter retrospective cohort study included 1,196 RA patients enrolled in the China Rheumatoid Arthritis Registry of Patients with Chinese Medicine (CERTAIN) from September 1, 2019 to December 4, 2023, who initiated GC therapy. Participants were divided into the Western medicine (WM) and integrative medicine (IM, combination of CM and WM) groups based on medication regimen. Follow-up was performed at least every 3 months to assess dynamic changes in GC dose. Changes in GC dose were analyzed by generalized estimator equation, the probability of GC discontinuation was assessed using Kaplan-Meier curve, and predictors of GC discontinuation were analyzed by Cox regression. Patients with <12 months of follow-up were excluded for the sensitivity analysis.
RESULTS:
Among 1,196 patients (85.4% female; median age 56.4 years), 880 (73.6%) received IM. Over a median 12-month follow-up, 34.3% (410 cases) discontinued GC, with significantly higher rates in the IM group (40.8% vs. 16.1% in WM; P<0.05). GC dose declined progressively, with IM patients demonstrating faster reductions (median 3.75 mg vs. 5.00 mg in WM at 12 months; P<0.05). Multivariate Cox analysis identified age <60 years [P<0.001, hazard ratios (HR)=2.142, 95% confidence interval (CI): 1.523-3.012], IM therapy (P=0.001, HR=2.175, 95% CI: 1.369-3.456), baseline GC dose ⩽7.5 mg (P=0.003, HR=1.637, 95% CI: 1.177-2.275), and absence of non-steroidal anti-inflammatory drugs use (P=0.001, HR=2.546, 95% CI: 1.432-4.527) as significant predictors of GC discontinuation. Sensitivity analysis (545 cases) confirmed these findings.
CONCLUSIONS
RA patients receiving CM face difficulties in following guideline-recommended GC discontinuation protocols. IM can promote GC discontinuation and is a promising strategy to reduce GC dependency in RA management. (Trial registration: ClinicalTrials.gov, No. NCT05219214).
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Arthritis, Rheumatoid/drug therapy*
;
Glucocorticoids/therapeutic use*
;
Medicine, Chinese Traditional
;
Retrospective Studies

Result Analysis
Print
Save
E-mail