1.The Role and Mechanism of Lactate Produced by Exercise in The Nervous System
Jing MA ; Shu-Min BO ; Yang CHENG
Progress in Biochemistry and Biophysics 2025;52(2):348-357
Lactate, with a chemical formula of C3H6O3, is an intermediate product of glucose metabolism in the body and a raw material for hepatic gluconeogenesis. Under physiological resting conditions, the body mainly relies on aerobic oxidation of sugar and fat for energy supply, so the blood lactate concentration is lower. However, during exercise, the enhanced glycolysis in skeletal muscles leads to the significant release of lactate into the bloodstream, causing a marked increase in blood lactate concentration. Traditionally, lactate has been regarded as a metabolic waste product of glycolysis and a contributor to exercise-induced fatigue. Nevertheless, recent studies have revealed that, in humans, lactate is a major vehicle for carbohydrate carbon distribution and metabolism, serving not only as an energy substance alongside glucose but also as a vital component in various biological pathways involved in cardiac energetics, muscle adaptation, brain function, growth and development, and inflammation therapy. Two primary pathways can elevate lactate levels in neurons during exercise. One is peripheral skeletal muscle-derived lactate, which can enter the bloodstream and cross the blood-brain barrier into the brain with the assistance of monocarboxylate transporters (MCTs) from the solute carrier family 16 (SLC16). The other is the central brain-derived pathway. During exercise, neuronal activity is enhanced, promoting the secretion of neuroactive substances such as glutamate, norepinephrine, and serotonin in the brain. This activates astrocytes to break down glycogen into lactate and stimulates glutamate from the presynaptic terminal into the synaptic cleft. It upregulates the glucose transport protein-1 (GLUT-1) expression, allowing astrocytes to convert glucose into lactate through glycolysis. The lactate is produced via peripheral pathways and central pathways during exercise are transported by astrocyte membrane monocarboxylate transporters MCT1 and MCT4 to the extracellular space, where neurons take it up through neuronal cell membrane MCT2. The lactate in neurons can serve as an alternative energy source of glucose for neuronal functional activities, meeting the increased energy demands of synaptic activity during exercise, and maintaining energy balance and normal physiological function in the brain. Additionally, acting as a signaling molecule lactate can enhance synaptic plasticity through the SIRT1/PGC-1α/FNDC5 and ERK1/2 signaling pathways, lactate can promote angiogenesis by upregulating VEGF-A expression through the PI3K/Akt and ERK1/2 signaling pathways, stimulate neurogenesis via the Akt/PKB signaling pathway, and reduce neuroinflammation through activation of the “lactate timer”. Overall, lactate contributes to the protection of neurons, the promotion of learning and memory, the enhancement of synaptic plasticity, and the reduction of neuroinflammation in the nervous system. While lactate may serve as a potential mediator for information exchange between the peripheral and central nervous systems during exercise, further experimental research is needed to elucidate its action mechanisms in the nervous system. In addition, future studies should utilize advanced neurophysiological and molecular biology techniques to uncover the importance of lactate in maintaining brain function and preventing neurological diseases. Accordingly, this article first reviews the historical research on lactate, then summarizes the metabolic characteristics and neuronal sources of lactate, and finally explores the role and mechanisms of exercise-induced lactate in the nervous system, aiming to provide new perspectives and targets for understanding the mechanisms underlying exercise promotion of brain health.
2.Prognostic Significance of KMT2D Gene Mutation and Its Co-mutated Genes in Patients with Diffuse Large B-Cell Lymphoma
Mutibaier·MIJITI ; Xiaolong QI ; Renaguli·ABULAITI ; Wenxin TIAN ; Sha LIU ; Weiyuan MA ; Zengsheng WANG ; Li AN ; Min MAO ; Muhebaier·ABUDUER ; Yan LI
Cancer Research on Prevention and Treatment 2025;52(2):127-132
Objective To explore the clinical characteristics of patients with diffuse large B-cell lymphoma (DLBCL) accompanied with KMT2D gene mutation and the impact of its co-mutated genes on prognosis. Methods Clinical data of 155 newly diagnosed DLBCL patients were obtained. The second-generation sequencing method was used to detect 475 hotspot genes, including KMT2D mutation. Patients were divided into the KMT2D mutation group and KMT2D wild-type group based on the presence or absence of KMT2D gene mutation. Clinical characteristics, differences in co-mutated genes, and survival differences between the two groups were compared. Results The frequency of KMT2D mutation was 31%, which is predominantly observed in elderly patients (P=0.07) and less in the double-expressor phenotype (P=0.07). Compared with the KMT2D wild-type group, KMT2D gene mutation was associated with higher co-mutation rates of CDKN2A (OR=2.82, P=0.01) and BCL2 (OR=3.84, P=0.016), while being mutually exclusive with MYC gene mutation (OR=0.11, P=0.013). In univariate survival analysis, no statistically significant difference in overall survival (OS) was found between the KMT2D mutation group and the wild-type group (P=0.54). Further analysis of the prognostic significance of KMT2D with other gene mutations indicated that patients with KMT2DmutBTG2mut had poorer OS than those with KMT2Dwt BTG2mut (P=0.07) and KMT2Dwt BTG2wt (P=0.05). On the contrary, patients with KMT2Dmut CD79Bmut had better OS than those with KMT2Dmut CD79Bwt (P=0.09), with no prognostic impact observed for other co-mutated genes. Multivariate Cox regression analysis revealed that Ann Arbor stages Ⅲ and Ⅳ (HR=2.751, 95%CI: 1.169-6.472, P=0.02), elevated LDH levels (HR=2.461, 95%CI: 1.396-4.337, P=0.002), Ki-67 index>80% (HR=1.875, 95%CI: 1.066-3.299, P=0.029), and KMT2DmutBTG2mut(HR=4.566, 95%CI: 1.348-15.471, P=0.015) were independent risk factors for OS in patients with DLBCL (P<0.05). Conclusion DLBCL patients with KMT2D mutation often have multiple gene mutations, among which patients with a co-mutated BTG2 gene have poor prognosis.
3.Mechanism of Ruyan Neixiao Cream in Promoting Ferroptosis in Breast Precancerous Lesion Cells by Regulating Nrf2/SLC7A11/GPX4 Signaling Pathway
Haotian ZHANG ; Yebei QIU ; Ran SU ; Xianxin YAN ; Min MA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):98-107
ObjectiveTo explore the mechanism by which Ruyan Neixiao cream (RUC) induces ferroptosis in breast precancerous lesion (BPL) cells, and to enrich the theoretical foundation for its use in the treatment of BPL. MethodsThe inhibition of cell proliferation by 1%, 2%, and 4% concentrations of Ruyanneixiao Cream transdermal solution (RUT) was assessed using cell counting kit-8 (CCK-8) and a colony formation assay. Reactive oxygen species (ROS) were measured using the DCFH-DA probe, and the levels of ferrous ions (Fe2+), glutathione (GSH), and malondialdehyde (MDA) were determined using appropriate kits. Lipid peroxidation was detected with the C11-BODIPY581/591 fluorescent probe. The expression of nuclear factor E2-related factor 2 (Nrf2), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4) proteins was analyzed by Western blot. The BPL rat model was constructed using 2,2′-bis(hydroxymethyl)butyric acid (DMBA) combined with estrogen and progesterone, and the rats were treated with RUC for external application. After the 12th cycle, the rats were euthanized, and histopathological changes in breast tissue were observed by hematoxylin-eosin (HE) staining. Fe2+ and MDA levels in breast tissue were measured using corresponding kits. The expression of Nrf2, SLC7A11, and GPX4 proteins in BPL rat breast tissue was detected by immunohistochemistry (IHC) and Western blot. ResultsCompared with the matrix group, the cell viability of MCF-10AT cells in the 1%, 2%, and 4% RUT groups was significantly reduced (P<0.05) in a concentration-dependent manner, with the 24-hour half inhibitory concentration (IC50) being 2.23%. Compared with the 4% RUT group, cell viability in the RUT + Fer-1 group was significantly increased (P<0.05). Compared with the matrix group, the colony formation rates of MCF-10AT cells in the 1%, 2%, and 4% RUT groups were significantly decreased (P<0.05). Compared with the 4% RUT group, the cell colony formation rate of the RUT + Fer-1 group was significantly increased (P<0.05). Compared with the matrix group, the levels of ROS and Fe2+ in the 1%, 2%, and 4% RUT groups were significantly increased (P<0.05), while GSH levels were significantly decreased (P<0.05), and MDA and lipid peroxidation levels were significantly increased (P<0.05). Compared with the 4% RUT group, ROS and Fe2+ levels in the RUT + Fer-1 group were significantly reduced (P<0.05), while GSH levels were significantly increased (P<0.05), and MDA and lipid peroxidation levels were significantly reduced (P<0.05). Compared with the matrix group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the 1%, 2%, and 4% RUT groups were significantly decreased (P<0.05). Compared with the 4% RUT group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the RUT + Fer-1 group were significantly increased (P<0.05). In the in vivo experiment, compared with the matrix group, the breast tissue histopathological status of the BPL rats in the RUC group was effectively improved, with less dilatation of the mammary ducts and more orderly duct arrangement. No pathological morphology indicative of invasive cancer was observed. Compared with the matrix group, Fe2+ and MDA levels in the mammary tissue of the RUC group were significantly increased (P<0.05). Compared with the matrix group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the mammary tissue of the RUC group were significantly reduced (P<0.05). ConclusionRUC may induce ferroptosis in BPL cells by inhibiting the Nrf2/SLC7A11/GPX4 signaling pathway, increasing Fe2+ accumulation, and promoting lipid peroxidation.
4.Mechanism of Ruyan Neixiao Cream in Promoting Ferroptosis in Breast Precancerous Lesion Cells by Regulating Nrf2/SLC7A11/GPX4 Signaling Pathway
Haotian ZHANG ; Yebei QIU ; Ran SU ; Xianxin YAN ; Min MA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):98-107
ObjectiveTo explore the mechanism by which Ruyan Neixiao cream (RUC) induces ferroptosis in breast precancerous lesion (BPL) cells, and to enrich the theoretical foundation for its use in the treatment of BPL. MethodsThe inhibition of cell proliferation by 1%, 2%, and 4% concentrations of Ruyanneixiao Cream transdermal solution (RUT) was assessed using cell counting kit-8 (CCK-8) and a colony formation assay. Reactive oxygen species (ROS) were measured using the DCFH-DA probe, and the levels of ferrous ions (Fe2+), glutathione (GSH), and malondialdehyde (MDA) were determined using appropriate kits. Lipid peroxidation was detected with the C11-BODIPY581/591 fluorescent probe. The expression of nuclear factor E2-related factor 2 (Nrf2), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4) proteins was analyzed by Western blot. The BPL rat model was constructed using 2,2′-bis(hydroxymethyl)butyric acid (DMBA) combined with estrogen and progesterone, and the rats were treated with RUC for external application. After the 12th cycle, the rats were euthanized, and histopathological changes in breast tissue were observed by hematoxylin-eosin (HE) staining. Fe2+ and MDA levels in breast tissue were measured using corresponding kits. The expression of Nrf2, SLC7A11, and GPX4 proteins in BPL rat breast tissue was detected by immunohistochemistry (IHC) and Western blot. ResultsCompared with the matrix group, the cell viability of MCF-10AT cells in the 1%, 2%, and 4% RUT groups was significantly reduced (P<0.05) in a concentration-dependent manner, with the 24-hour half inhibitory concentration (IC50) being 2.23%. Compared with the 4% RUT group, cell viability in the RUT + Fer-1 group was significantly increased (P<0.05). Compared with the matrix group, the colony formation rates of MCF-10AT cells in the 1%, 2%, and 4% RUT groups were significantly decreased (P<0.05). Compared with the 4% RUT group, the cell colony formation rate of the RUT + Fer-1 group was significantly increased (P<0.05). Compared with the matrix group, the levels of ROS and Fe2+ in the 1%, 2%, and 4% RUT groups were significantly increased (P<0.05), while GSH levels were significantly decreased (P<0.05), and MDA and lipid peroxidation levels were significantly increased (P<0.05). Compared with the 4% RUT group, ROS and Fe2+ levels in the RUT + Fer-1 group were significantly reduced (P<0.05), while GSH levels were significantly increased (P<0.05), and MDA and lipid peroxidation levels were significantly reduced (P<0.05). Compared with the matrix group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the 1%, 2%, and 4% RUT groups were significantly decreased (P<0.05). Compared with the 4% RUT group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the RUT + Fer-1 group were significantly increased (P<0.05). In the in vivo experiment, compared with the matrix group, the breast tissue histopathological status of the BPL rats in the RUC group was effectively improved, with less dilatation of the mammary ducts and more orderly duct arrangement. No pathological morphology indicative of invasive cancer was observed. Compared with the matrix group, Fe2+ and MDA levels in the mammary tissue of the RUC group were significantly increased (P<0.05). Compared with the matrix group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the mammary tissue of the RUC group were significantly reduced (P<0.05). ConclusionRUC may induce ferroptosis in BPL cells by inhibiting the Nrf2/SLC7A11/GPX4 signaling pathway, increasing Fe2+ accumulation, and promoting lipid peroxidation.
5.Effect of oxymatrine on expression of stem markers and osteogenic differentiation of periodontal ligament stem cells
Jing LUO ; Min YONG ; Qi CHEN ; Changyi YANG ; Tian ZHAO ; Jing MA ; Donglan MEI ; Jinpeng HU ; Zhaojun YANG ; Yuran WANG ; Bo LIU
Chinese Journal of Tissue Engineering Research 2025;29(19):3992-3999
BACKGROUND:Human periodontal ligament stem cells are potential functional cells for periodontal tissue engineering.However,long-term in vitro culture may lead to reduced stemness and replicative senescence of periodontal ligament stem cells,which may impair the therapeutic effect of human periodontal ligament stem cells. OBJECTIVE:To investigate the effect of oxymatrine on the stemness maintenance and osteogenic differentiation of periodontal ligament stem cells in vitro,and to explore the potential mechanism. METHODS:Periodontal ligament stem cells were isolated from human periodontal ligament tissues by tissue explant enzyme digestion and cultured.The surface markers of mesenchymal cells were identified by flow cytometry.Periodontal ligament stem cells were incubated with 0,2.5,5,and 10 μg/mL oxymatrine.The effect of oxymatrine on the proliferation activity of periodontal ligament stem cells was detected by CCK8 assay.The appropriate drug concentration for subsequent experiments was screened.Western blot assay was used to detect the expression of stem cell non-specific proteins SOX2 and OCT4 in periodontal ligament stem cells.qRT-PCR and western blot assay were used to detect the expression levels of related osteogenic genes and proteins in periodontal ligament stem cells. RESULTS AND CONCLUSION:(1)The results of CCK8 assay showed that 2.5 μg/mL oxymatrine significantly enhanced the proliferative activity of periodontal stem cells,and the subsequent experiment selected 2.5 μg/mL oxymatrine to intervene.(2)Compared with the blank control group,the protein expression level of SOX2,a stem marker of periodontal ligament stem cells in the oxymatrine group did not change significantly(P>0.05),and the expression of OCT4 was significantly up-regulated(P<0.05).(3)Compared with the osteogenic induction group,the osteogenic genes ALP,RUNX2 mRNA expression and their osteogenic associated protein ALP protein expression of periodontal ligament stem cells were significantly down-regulated in the oxymatrine+osteogenic induction group(P<0.05).(4)The oxymatrine up-regulated the expression of stemness markers of periodontal ligament stem cells and inhibited the bone differentiation of periodontal ligament stem cells,and the results of high-throughput sequencing showed that it may be associated with WNT2,WNT16,COMP,and BMP6.
6.A Cross-sectional Study of Blood Glucose and Biochemical Indicators in Pediatric Patients with Hepatic Glycogen Storage Disease
Ni MA ; Haotian WU ; Ying WANG ; Jing YANG ; Danxia LIANG ; Min YANG
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(1):132-137
ObjectivePatients with hepatic glycogen storage disease(GSD)have recurrent episodes of hypoglycemia. This study aimed to investigate and analyze blood glucose and biochemical indicators in pediatric patients with hepatic GSD, thus provide data support for hypoglycemia prevention and its clinical management. MethodsA cross-sectional field study was conducted among patients with hepatic GSD treated in the Department of Pediatrics of Guangdong Provincial People's Hospital on July 14, 2024. We collected the peripheral blood samples of the patients and their healthy family controls on site, then analyzed and compared their blood glucose and biochemical indicators. ResultsOf the 44 patients with hepatic GSD, there were 34 males and 10 females, including GSD Ib(n =14), GSD Ia(n=15), GSD Ⅲ(n=2), GSD Ⅵ(n=7)and GSD Ⅸ(n=6). The average age was 7.60(5.08-11.98)years. All patients were on uncooked cornstarch(UCCS)therapy. Of the patients, 77.3%(34/44)had hepatomegaly, 61.4%(27/44)had recurrent hypoglycemia, 61.4%(27/44)had blood glucose ≤ 3.9 mmol/L, 18.2%(8/44)had blood glucose ≤ 2.8 mmol/L, and none of the 8 cases was GSD Ib. The lowest blood glucose level was 1.19 mmol/L and no episodes of hypoglycemia occurred. Of the family control subjects, 65.9%(29/44)had blood glucose ≤ 3.9 mmol/L. There was no significant difference in hypoglycemia prevalence between hepatic GSD group and control group(P=0.658). The hepatic GSD patients had hyperlactacemia, hyperuricemia and hypercholesterolemia prevalence rates of 65.9%, 45.5% and 9.1%, respectively, as compared with 18.2%, 43.2% and 15.9%, respectively, for the family control subjects. No significant difference was found in the prevalence rates of hyperuricemia and hypercholesterolemia between the two groups(P=0.830 and P=0.334, respectively). ConclusionsAsymptomatic hypoglycemia is common in patients with hepatic GSD, especially in non-GSD-Ib patients. It is necessary to optimize the diet management of UCCS, conduct dynamic blood glucose monitoring and follow a light diet, so as to decrease hyperuricemia and hypercholesterolemia, avoid and reduce the serious adverse reactions and complications caused by severe hypoglycemia.
7.Influence of corneal fluorescein sodium staining on test results of iTrace visual function analyzer
Xin YIN ; Qingyan LIU ; Xiao SHAO ; Min XUE ; Yao LU ; Shuying MA ; Chunsheng SHI
International Eye Science 2025;25(4):680-684
AIM: To investigate the impact of corneal fluorescein sodium(NaF)staining on the examination results of iTrace visual function analyzer(iTrace).METHODS: Prospective cohort study. Totally 100 patients(100 eyes)with ametropia who visited the outpatient department of Anhui Eye Hospital from April to November 2024 were recruited. They were divided into an experimental group and a control group, with 50 patients(50 eyes, and only the right eyes were selected for inclusion)in each group. In the experimental group, corneal staining was performed using fluorescein sodium staining test strips, while in the control group, 1 drop of 0.9% normal saline was instilled into the eyes. The iTrace examination was conducted before the intervention and at 5, 10, and 20 min after the intervention. The total corneal higher-order aberrations, spherical aberration, coma aberration, trefoil aberration, best sphere value(RO value), asphericity factor(Q value), and corneal vertical refractive power difference(IS value)at each time of examination were recorded and compared.RESULTS: There was no statistically significant difference in the baseline levels between the two groups(all P>0.05). Intra-group comparison revealed that the total higher-order aberrations, spherical aberration, coma aberration, and trefoil aberration measured 5 min after NaF staining in the experimental group were significantly increased compared with those before staining(all P<0.05). Inter-group comparison showed that the changes(differences from the baseline)in the total corneal higher-order aberrations, spherical aberration, coma aberration, and trefoil aberration measured by iTrace 5 min after the intervention in the experimental group were significantly greater than those in the control group(all P<0.05). There was no statistically significant difference in the changes(differences from the baseline)of various iTrace parameters measured at 10 and 20 min after the intervention between the two groups(all P>0.05). There was no statistical significance in the RO value, Q value, and IS value in the two groups(all P>0.05).CONCLUSION: Corneal NaF staining can cause a short-term increase in the wavefront aberration values(total corneal higher-order aberrations, spherical aberration, coma aberration, trefoil aberration)measured by iTrace, and it gradually disappears with the passage of time. However, it has no impact on the measurement of corneal topography parameters(RO value, Q value, IS value).
8.Analysis of unqualified ALT results in the initial screening and re-examination of blood donors in Changchun, China
Min HE ; Jingru CUI ; Zhiyong WANG ; Yang MA
Chinese Journal of Blood Transfusion 2025;38(4):495-501
[Objective] To investigate the non-pathological influencing factors of the unqualified alanine aminotransferase (ALT) in the initial screening of blood donors in Changchun and the laboratory re-examination, so as to provide evidence for reducing the deferral of blood donors and the discarding of blood due to ALT disqualification. [Methods] The unqualified results of ALT from the laboratory of our center from September 1, 2023 to October 31, 2024 were collected. The unqualified rates of ALT were statistically analyzed according to the blood collection sites and the initial screening detection equipment. The samples after ALT pre-donation screening were tested in the laborator, and the unqualified rates of ALT in the initial screening and the laboratory, the non-conformity rate of the results and the distribution range of ALT values were statistically analyzed according to the blood collection sites and the initial screening detection equipment. A questionnaire survey was conducted on the blood donors before blood collection to statistically analyze the influence of the blood donors' living habits and diet on ALT test results. [Results] The statistical analysis of the unqualified rate of ALT in the laboratory showed statistically significant differences in the ALT disqualification rates among different blood collection sites and different initial screening detection devices (P<0.05). Comparison of the ALT unqualified rate for the same type of equipment at different sites showed that for Equipment 1, there were differences between the combined blood collection house and the whole blood house, and between the combined blood collection house and the blood donation vehicle (P<0.05); for Equipment 2, there were differences between the combined blood collection house and the blood donation vehicle, and between the whole blood house and the blood donation vehicle (P<0.05); there were no significant differences among other groups with the same equipment. The initial screening and the laboratory test results for the same samples were compared, with unqualified rates of ALT of 16.29% and 13.01%, respectively. There were statistically significant differences in the unqualified rates of ALT among different blood collection sites (P<0.05), but no significant differences in the ALT test results among different detection equipment (P>0.05).. The non-conformity rate between the initial screening and the laboratory results was 5.26%, of which 81.15% (99/122) were unqualified in the initial screening but qualified in the laboratory. There were statistically significant differences in those unqualified in the initial screening but qualified in the laboratory among different blood collection sites and different detection equipment (P<0.05). The median ALT level in the initial screening was 29.0 U/L (with a 5%-95% range of 14-75 U/L), and the median ALT level in the laboratory was 19 U/L (with a 5%-95% range of 8-65 U/L). The results of the questionnaire survey showed that 33.3% (2/6) of those who consumed alcohol within 24 hours before blood donation had unqualified ALT, and 10% (1/10) of those who stayed up late the night before blood donation had unqualified ALT. [Conclusion] The unqualified rates of ALT in the initial screening before blood collection and the laboratory re-examination of blood donors in Changchun are closely related to the blood collection sites, detection equipment, detection environment, detection personnel, samples, ALT thresholds and detection time. Drinking alcohol and staying up late within 24 hours before blood donation increase the risk of unqualified ALT detection.
9.The Role and Mechanism of Circadian Rhythm Regulation in Skin Tissue Regeneration
Ya-Qi ZHAO ; Lin-Lin ZHANG ; Xiao-Meng MA ; Zhen-Kai JIN ; Kun LI ; Min WANG
Progress in Biochemistry and Biophysics 2025;52(5):1165-1178
Circadian rhythm is an endogenous biological clock mechanism that enables organisms to adapt to the earth’s alternation of day and night. It plays a fundamental role in regulating physiological functions and behavioral patterns, such as sleep, feeding, hormone levels and body temperature. By aligning these processes with environmental changes, circadian rhythm plays a pivotal role in maintaining homeostasis and promoting optimal health. However, modern lifestyles, characterized by irregular work schedules and pervasive exposure to artificial light, have disrupted these rhythms for many individuals. Such disruptions have been linked to a variety of health problems, including sleep disorders, metabolic syndromes, cardiovascular diseases, and immune dysfunction, underscoring the critical role of circadian rhythm in human health. Among the numerous systems influenced by circadian rhythm, the skin—a multifunctional organ and the largest by surface area—is particularly noteworthy. As the body’s first line of defense against environmental insults such as UV radiation, pollutants, and pathogens, the skin is highly affected by changes in circadian rhythm. Circadian rhythm regulates multiple skin-related processes, including cyclic changes in cell proliferation, differentiation, and apoptosis, as well as DNA repair mechanisms and antioxidant defenses. For instance, studies have shown that keratinocyte proliferation peaks during the night, coinciding with reduced environmental stress, while DNA repair mechanisms are most active during the day to counteract UV-induced damage. This temporal coordination highlights the critical role of circadian rhythms in preserving skin integrity and function. Beyond maintaining homeostasis, circadian rhythm is also pivotal in the skin’s repair and regeneration processes following injury. Skin regeneration is a complex, multi-stage process involving hemostasis, inflammation, proliferation, and remodeling, all of which are influenced by circadian regulation. Key cellular activities, such as fibroblast migration, keratinocyte activation, and extracellular matrix remodeling, are modulated by the circadian clock, ensuring that repair processes occur with optimal efficiency. Additionally, circadian rhythm regulates the secretion of cytokines and growth factors, which are critical for coordinating cellular communication and orchestrating tissue regeneration. Disruptions to these rhythms can impair the repair process, leading to delayed wound healing, increased scarring, or chronic inflammatory conditions. The aim of this review is to synthesize recent information on the interactions between circadian rhythms and skin physiology, with a particular focus on skin tissue repair and regeneration. Molecular mechanisms of circadian regulation in skin cells, including the role of core clock genes such as Clock, Bmal1, Per and Cry. These genes control the expression of downstream effectors involved in cell cycle regulation, DNA repair, oxidative stress response and inflammatory pathways. By understanding how these mechanisms operate in healthy and diseased states, we can discover new insights into the temporal dynamics of skin regeneration. In addition, by exploring the therapeutic potential of circadian biology in enhancing skin repair and regeneration, strategies such as topical medications that can be applied in a time-limited manner, phototherapy that is synchronized with circadian rhythms, and pharmacological modulation of clock genes are expected to optimize clinical outcomes. Interventions based on the skin’s natural rhythms can provide a personalized and efficient approach to promote skin regeneration and recovery. This review not only introduces the important role of circadian rhythms in skin biology, but also provides a new idea for future innovative therapies and regenerative medicine based on circadian rhythms.
10.Correlation Between the Spinopelvic Parameters and Morphological Characteristics of Pedicle-Facet Joints in Different Lumbar Spondylolisthesis
Baoqiang HE ; Yebo LENG ; Shicai XU ; Yang LI ; Jiajun ZHOU ; Min KANG ; Yehui LIAO ; Minghao TIAN ; Qiang TANG ; Fei MA ; Qing WANG ; Chao TANG ; Dejun ZHONG
Neurospine 2025;22(1):231-242
Objective:
Based on spinopelvic parameters and biomechanical principles, the pedicle-facet joint (PFJ) morphological characteristics of isthmic and degenerative spondylolisthesis were analyzed, and the mechanism of their onset and progression was discussed.
Methods:
This retrospective cross-sectional study included 194 patients with L5 spondylolysis or L5–S1 low-grade isthmic spondylolisthesis (IS group), 172 patients with L4–5 degenerative spondylolisthesis (DS group), and 366 patients with nonlumbar spondylolysis (NL group). The spinopelvic parameters and PFJ morphological parameters of the patients were measured, the differences in these parameters among and within the 3 groups were compared, and the correlations were analyzed.
Results:
Sacral slope (SS) and lumbar lordosis (LL) were the highest in the IS group, the second highest in the DS group, and the lowest in the NL group. Among the 3 groups, the L4 facet joint angle (FJA) was the largest in the IS group, the second largest in the NL group, and the smallest in the DS group. The L4 pedicle-facet joint angle (PFA) was the largest in the DS group, the second largest in the IS group, and the smallest in the NL group. Pearson correlation analysis showed that within each group, SS and LL were negatively correlated with FJA and positively correlated with PFA.
Conclusion
This study found a correlation between the PFJ morphological characteristics of patients with lumbar spondylolisthesis and spinopelvic parameters, suggesting that the morphological characteristics of PFJs may be caused by varying stresses under different spinopelvic morphologies.

Result Analysis
Print
Save
E-mail