1.Association between mechanical power and intensive care unit mortality in Korean patients under pressure-controlled ventilation
Jae Kyeom SIM ; Sang-Min LEE ; Hyung Koo KANG ; Kyung Chan KIM ; Young Sam KIM ; Yun Seong KIM ; Won-Yeon LEE ; Sunghoon PARK ; So Young PARK ; Ju-Hee PARK ; Yun Su SIM ; Kwangha LEE ; Yeon Joo LEE ; Jin Hwa LEE ; Heung Bum LEE ; Chae-Man LIM ; Won-Il CHOI ; Ji Young HONG ; Won Jun SONG ; Gee Young SUH
Acute and Critical Care 2024;39(1):91-99
Mechanical power (MP) has been reported to be associated with clinical outcomes. Because the original MP equation is derived from paralyzed patients under volume-controlled ventilation, its application in practice could be limited in patients receiving pressure-controlled ventilation (PCV). Recently, a simplified equation for patients under PCV was developed. We investigated the association between MP and intensive care unit (ICU) mortality. Methods: We conducted a retrospective analysis of Korean data from the Fourth International Study of Mechanical Ventilation. We extracted data of patients under PCV on day 1 and calculated MP using the following simplified equation: MPPCV = 0.098 ∙ respiratory rate ∙ tidal volume ∙ (ΔPinsp + positive end-expiratory pressure), where ΔPinsp is the change in airway pressure during inspiration. Patients were divided into survivors and non-survivors and then compared. Multivariable logistic regression was performed to determine association between MPPCV and ICU mortality. The interaction of MPPCV and use of neuromuscular blocking agent (NMBA) was also analyzed. Results: A total of 125 patients was eligible for final analysis, of whom 38 died in the ICU. MPPCV was higher in non-survivors (17.6 vs. 26.3 J/min, P<0.001). In logistic regression analysis, only MPPCV was significantly associated with ICU mortality (odds ratio, 1.090; 95% confidence interval, 1.029–1.155; P=0.003). There was no significant effect of the interaction between MPPCV and use of NMBA on ICU mortality (P=0.579). Conclusions: MPPCV is associated with ICU mortality in patients mechanically ventilated with PCV mode, regardless of NMBA use.
2.Association between mechanical power and intensive care unit mortality in Korean patients under pressure-controlled ventilation
Jae Kyeom SIM ; Sang-Min LEE ; Hyung Koo KANG ; Kyung Chan KIM ; Young Sam KIM ; Yun Seong KIM ; Won-Yeon LEE ; Sunghoon PARK ; So Young PARK ; Ju-Hee PARK ; Yun Su SIM ; Kwangha LEE ; Yeon Joo LEE ; Jin Hwa LEE ; Heung Bum LEE ; Chae-Man LIM ; Won-Il CHOI ; Ji Young HONG ; Won Jun SONG ; Gee Young SUH
Acute and Critical Care 2024;39(1):91-99
Mechanical power (MP) has been reported to be associated with clinical outcomes. Because the original MP equation is derived from paralyzed patients under volume-controlled ventilation, its application in practice could be limited in patients receiving pressure-controlled ventilation (PCV). Recently, a simplified equation for patients under PCV was developed. We investigated the association between MP and intensive care unit (ICU) mortality. Methods: We conducted a retrospective analysis of Korean data from the Fourth International Study of Mechanical Ventilation. We extracted data of patients under PCV on day 1 and calculated MP using the following simplified equation: MPPCV = 0.098 ∙ respiratory rate ∙ tidal volume ∙ (ΔPinsp + positive end-expiratory pressure), where ΔPinsp is the change in airway pressure during inspiration. Patients were divided into survivors and non-survivors and then compared. Multivariable logistic regression was performed to determine association between MPPCV and ICU mortality. The interaction of MPPCV and use of neuromuscular blocking agent (NMBA) was also analyzed. Results: A total of 125 patients was eligible for final analysis, of whom 38 died in the ICU. MPPCV was higher in non-survivors (17.6 vs. 26.3 J/min, P<0.001). In logistic regression analysis, only MPPCV was significantly associated with ICU mortality (odds ratio, 1.090; 95% confidence interval, 1.029–1.155; P=0.003). There was no significant effect of the interaction between MPPCV and use of NMBA on ICU mortality (P=0.579). Conclusions: MPPCV is associated with ICU mortality in patients mechanically ventilated with PCV mode, regardless of NMBA use.
3.Association between mechanical power and intensive care unit mortality in Korean patients under pressure-controlled ventilation
Jae Kyeom SIM ; Sang-Min LEE ; Hyung Koo KANG ; Kyung Chan KIM ; Young Sam KIM ; Yun Seong KIM ; Won-Yeon LEE ; Sunghoon PARK ; So Young PARK ; Ju-Hee PARK ; Yun Su SIM ; Kwangha LEE ; Yeon Joo LEE ; Jin Hwa LEE ; Heung Bum LEE ; Chae-Man LIM ; Won-Il CHOI ; Ji Young HONG ; Won Jun SONG ; Gee Young SUH
Acute and Critical Care 2024;39(1):91-99
Mechanical power (MP) has been reported to be associated with clinical outcomes. Because the original MP equation is derived from paralyzed patients under volume-controlled ventilation, its application in practice could be limited in patients receiving pressure-controlled ventilation (PCV). Recently, a simplified equation for patients under PCV was developed. We investigated the association between MP and intensive care unit (ICU) mortality. Methods: We conducted a retrospective analysis of Korean data from the Fourth International Study of Mechanical Ventilation. We extracted data of patients under PCV on day 1 and calculated MP using the following simplified equation: MPPCV = 0.098 ∙ respiratory rate ∙ tidal volume ∙ (ΔPinsp + positive end-expiratory pressure), where ΔPinsp is the change in airway pressure during inspiration. Patients were divided into survivors and non-survivors and then compared. Multivariable logistic regression was performed to determine association between MPPCV and ICU mortality. The interaction of MPPCV and use of neuromuscular blocking agent (NMBA) was also analyzed. Results: A total of 125 patients was eligible for final analysis, of whom 38 died in the ICU. MPPCV was higher in non-survivors (17.6 vs. 26.3 J/min, P<0.001). In logistic regression analysis, only MPPCV was significantly associated with ICU mortality (odds ratio, 1.090; 95% confidence interval, 1.029–1.155; P=0.003). There was no significant effect of the interaction between MPPCV and use of NMBA on ICU mortality (P=0.579). Conclusions: MPPCV is associated with ICU mortality in patients mechanically ventilated with PCV mode, regardless of NMBA use.
4.Association between mechanical power and intensive care unit mortality in Korean patients under pressure-controlled ventilation
Jae Kyeom SIM ; Sang-Min LEE ; Hyung Koo KANG ; Kyung Chan KIM ; Young Sam KIM ; Yun Seong KIM ; Won-Yeon LEE ; Sunghoon PARK ; So Young PARK ; Ju-Hee PARK ; Yun Su SIM ; Kwangha LEE ; Yeon Joo LEE ; Jin Hwa LEE ; Heung Bum LEE ; Chae-Man LIM ; Won-Il CHOI ; Ji Young HONG ; Won Jun SONG ; Gee Young SUH
Acute and Critical Care 2024;39(1):91-99
Mechanical power (MP) has been reported to be associated with clinical outcomes. Because the original MP equation is derived from paralyzed patients under volume-controlled ventilation, its application in practice could be limited in patients receiving pressure-controlled ventilation (PCV). Recently, a simplified equation for patients under PCV was developed. We investigated the association between MP and intensive care unit (ICU) mortality. Methods: We conducted a retrospective analysis of Korean data from the Fourth International Study of Mechanical Ventilation. We extracted data of patients under PCV on day 1 and calculated MP using the following simplified equation: MPPCV = 0.098 ∙ respiratory rate ∙ tidal volume ∙ (ΔPinsp + positive end-expiratory pressure), where ΔPinsp is the change in airway pressure during inspiration. Patients were divided into survivors and non-survivors and then compared. Multivariable logistic regression was performed to determine association between MPPCV and ICU mortality. The interaction of MPPCV and use of neuromuscular blocking agent (NMBA) was also analyzed. Results: A total of 125 patients was eligible for final analysis, of whom 38 died in the ICU. MPPCV was higher in non-survivors (17.6 vs. 26.3 J/min, P<0.001). In logistic regression analysis, only MPPCV was significantly associated with ICU mortality (odds ratio, 1.090; 95% confidence interval, 1.029–1.155; P=0.003). There was no significant effect of the interaction between MPPCV and use of NMBA on ICU mortality (P=0.579). Conclusions: MPPCV is associated with ICU mortality in patients mechanically ventilated with PCV mode, regardless of NMBA use.
5.Immune Cells Are DifferentiallyAffected by SARS-CoV-2 Viral Loads in K18-hACE2 Mice
Jung Ah KIM ; Sung-Hee KIM ; Jeong Jin KIM ; Hyuna NOH ; Su-bin LEE ; Haengdueng JEONG ; Jiseon KIM ; Donghun JEON ; Jung Seon SEO ; Dain ON ; Suhyeon YOON ; Sang Gyu LEE ; Youn Woo LEE ; Hui Jeong JANG ; In Ho PARK ; Jooyeon OH ; Sang-Hyuk SEOK ; Yu Jin LEE ; Seung-Min HONG ; Se-Hee AN ; Joon-Yong BAE ; Jung-ah CHOI ; Seo Yeon KIM ; Young Been KIM ; Ji-Yeon HWANG ; Hyo-Jung LEE ; Hong Bin KIM ; Dae Gwin JEONG ; Daesub SONG ; Manki SONG ; Man-Seong PARK ; Kang-Seuk CHOI ; Jun Won PARK ; Jun-Won YUN ; Jeon-Soo SHIN ; Ho-Young LEE ; Ho-Keun KWON ; Jun-Young SEO ; Ki Taek NAM ; Heon Yung GEE ; Je Kyung SEONG
Immune Network 2024;24(2):e7-
Viral load and the duration of viral shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important determinants of the transmission of coronavirus disease 2019.In this study, we examined the effects of viral doses on the lung and spleen of K18-hACE2 transgenic mice by temporal histological and transcriptional analyses. Approximately, 1×105 plaque-forming units (PFU) of SARS-CoV-2 induced strong host responses in the lungs from 2 days post inoculation (dpi) which did not recover until the mice died, whereas responses to the virus were obvious at 5 days, recovering to the basal state by 14 dpi at 1×102 PFU. Further, flow cytometry showed that number of CD8+ T cells continuously increased in 1×102 PFU-virusinfected lungs from 2 dpi, but not in 1×105 PFU-virus-infected lungs. In spleens, responses to the virus were prominent from 2 dpi, and number of B cells was significantly decreased at 1×105PFU; however, 1×102 PFU of virus induced very weak responses from 2 dpi which recovered by 10 dpi. Although the defense responses returned to normal and the mice survived, lung histology showed evidence of fibrosis, suggesting sequelae of SARS-CoV-2 infection. Our findings indicate that specific effectors of the immune response in the lung and spleen were either increased or depleted in response to doses of SARS-CoV-2. This study demonstrated that the response of local and systemic immune effectors to a viral infection varies with viral dose, which either exacerbates the severity of the infection or accelerates its elimination.
6.The Profile of Early Sedation Depth and Clinical Outcomes of Mechanically Ventilated Patients in Korea
Dong-gon HYUN ; Jee Hwan AHN ; Ha-Yeong GIL ; Chung Mo NAM ; Choa YUN ; Jae-Myeong LEE ; Jae Hun KIM ; Dong-Hyun LEE ; Ki Hoon KIM ; Dong Jung KIM ; Sang-Min LEE ; Ho-Geol RYU ; Suk-Kyung HONG ; Jae-Bum KIM ; Eun Young CHOI ; JongHyun BAEK ; Jeoungmin KIM ; Eun Jin KIM ; Tae Yun PARK ; Je Hyeong KIM ; Sunghoon PARK ; Chi-Min PARK ; Won Jai JUNG ; Nak-Jun CHOI ; Hang-Jea JANG ; Su Hwan LEE ; Young Seok LEE ; Gee Young SUH ; Woo-Sung CHOI ; Keu Sung LEE ; Hyung Won KIM ; Young-Gi MIN ; Seok Jeong LEE ; Chae-Man LIM
Journal of Korean Medical Science 2023;38(19):e141-
Background:
Current international guidelines recommend against deep sedation as it is associated with worse outcomes in the intensive care unit (ICU). However, in Korea the prevalence of deep sedation and its impact on patients in the ICU are not well known.
Methods:
From April 2020 to July 2021, a multicenter, prospective, longitudinal, noninterventional cohort study was performed in 20 Korean ICUs. Sedation depth extent was divided into light and deep using a mean Richmond Agitation–Sedation Scale value within the first 48 hours. Propensity score matching was used to balance covariables; the outcomes were compared between the two groups.
Results:
Overall, 631 patients (418 [66.2%] and 213 [33.8%] in the deep and light sedation groups, respectively) were included. Mortality rates were 14.1% and 8.4% in the deep and light sedation groups (P = 0.039), respectively. Kaplan-Meier estimates showed that time to extubation (P < 0.001), ICU length of stay (P = 0.005), and death P = 0.041) differed between the groups. After adjusting for confounders, early deep sedation was only associated with delayed time to extubation (hazard ratio [HR], 0.66; 95% confidence inter val [CI], 0.55– 0.80; P < 0.001). In the matched cohort, deep sedation remained significantly associated with delayed time to extubation (HR, 0.68; 95% 0.56–0.83; P < 0.001) but was not associated with ICU length of stay (HR, 0.94; 95% CI, 0.79–1.13; P = 0.500) and in-hospital mortality (HR, 1.19; 95% CI, 0.65–2.17; P = 0.582).
Conclusion
In many Korean ICUs, early deep sedation was highly prevalent in mechanically ventilated patients and was associated with delayed extubation, but not prolonged ICU stay or in-hospital death.
9.Change in management and outcome of mechanical ventilation in Korea: a prospective observational study
Jae Kyeom SIM ; Sang-Min LEE ; Hyung Koo KANG ; Kyung Chan KIM ; Young Sam KIM ; Yun Seong KIM ; Won-Yeon LEE ; Sunghoon PARK ; So Young PARK ; Ju-Hee PARK ; Yun Su SIM ; Kwangha LEE ; Yeon Joo LEE ; Jin Hwa LEE ; Heung Bum LEE ; Chae-Man LIM ; Won-Il CHOI ; Ji Young HONG ; Won Jun SONG ; Gee Young SUH
The Korean Journal of Internal Medicine 2022;37(3):618-630
Background/Aims:
There are few studies describing contemporary status of mechanical ventilation in Korea. We investigated changes in management and outcome of mechanical ventilation in Korea.
Methods:
International, prospective observational cohort studies have been conducted every 6 years since 1998. Korean intensive care units (ICUs) participated in 2010 and 2016 cohorts. We compared 2016 and 2010 Korean data.
Results:
Two hundred and twenty-six patients from 18 ICUs and 275 patients from 12 ICUs enrolled in 2016 and 2010, respectively. In 2016 compared to 2010, use of non-invasive ventilation outside ICU increased (10.2% vs. 2.5%, p = 0.001). Pressure-control ventilation was the most common mode in both groups. Initial tidal volume (7.1 mL/kg vs. 7.4 mL/kg, p = 0.372) and positive end-expiratory pressure (6 cmH2O vs. 6 cmH2O, p = 0.141) were similar, but peak pressure (22 cmH2O vs. 24 cmH2O, p = 0.011) was lower in 2016. More patients received sedatives (70.7% vs. 57.0%, p = 0.002) and analgesics (86.5% vs. 51.1%, p < 0.001) in 2016. The awakening (48.4% vs. 31.0%, p = 0.002) was more frequently attempted in 2016. The accidental extubation rate decreased to one tenth of what it was in 2010 (1.1% vs. 10.2%, p < 0.001). The ICU mortality did not change (31.4% 35.6%, p = 0.343) but ICU length of stay showed a decreasing trend (9 days vs. 10 days, p = 0.054) in 2016.
Conclusions
There were temporal changes in care of patients on mechanical ventilation including better control of pain and agitation, and active attempt of awakening.
10.Severity-Adjusted Dexamethasone Dosing and Tocilizumab Combination for Severe COVID-19
Jin Yeong HONG ; Jae-Hoon KO ; Jinyoung YANG ; Soyoung HA ; Eliel NHAM ; Kyungmin HUH ; Sun Young CHO ; Cheol-In KANG ; Doo Ryeon CHUNG ; Jin Yang BAEK ; You Min SOHN ; Hyo Jung PARK ; Beomki LEE ; Hee Jae HUH ; Eun-Suk KANG ; Gee Young SUH ; Chi Ryang CHUNG ; Kyong Ran PECK
Yonsei Medical Journal 2022;63(5):430-439
Purpose:
Real-world experience with tocilizumab in combination with dexamethasone in patients with severe coronavirus disease (COVID-19) needs to be investigated.
Materials and Methods:
A retrospective cohort study was conducted to evaluate the effect of severity-adjusted dosing of dexamethasone in combination with tocilizumab for severe COVID-19 from August 2020 to August 2021. The primary endpoint was 30-day clinical recovery, which was defined as no oxygen requirement or referral after recovery.
Results:
A total of 66 patients were evaluated, including 33 patients in the dexamethasone (Dexa) group and 33 patients in the dexamethasone plus tocilizumab (DexaToci) group. The DexaToci group showed a statistically significant benefit in 30-day clinical recovery, compared to the Dexa group (p=0.024). In multivariable analyses, peak FiO2 within 3 days and tocilizumab combination were consistently significant for 30-day recovery (all p<0.05). The DexaToci group showed a significantly steeper decrease in FiO2 (-4.2±2.6) than the Dexa group (−2.7±2.6; p=0.021) by hospital day 15. The duration of oxygen requirement was significantly shorter in the DexaToci group than the Dexa group (median, 10.0 days vs. 17.0 days; p=0.006). Infectious complications and cellular and humoral immune responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the convalescence stage were not different between the two groups.
Conclusion
A combination of severity-adjusted dexamethasone and tocilizumab for the treatment of severe COVID-19 improved clinical recovery without increasing infectious complications or hindering the immune response against SARS-CoV-2.

Result Analysis
Print
Save
E-mail