1.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
2.Efficacy comparison of small-incision lenticule extraction and femtosecond assisted laser in situ keratomileusis in the treatment of myopia with astigmatism
Min ZHOU ; Suying YU ; Wanjiang DONG ; Long CHEN ; Miao HE
International Eye Science 2025;25(2):292-296
AIM: To compare the efficacy of small-incision lenticule extraction(SMILE)and femtosecond assisted laser in situ keratomileusis(FS-LASIK)in the treatment of patients with myopia and astigmatism.METHODS: Retrospective analysis. A total of 100 cases(200 eyes)of patients with myopia and astigmatism treated in our hospital from December 2021 to December 2022 were collected. Among them, 50 cases(100 eyes)were divided into SMILE group and 50 cases(100 eyes)were divided into FS-LASIK group according to the treatment plans. The visual acuity and astigmatism, corneal morphology parameters, subjective visual quality scores, ocular surface indicators, postoperative complications, and quality of life were compared between the two groups before and after surgery.RESULTS: There was no significant difference in uncorrected visual acuity(UCVA), best corrected visual acuity(BCVA), astigmatism, corneal asphericity Q value, corneal surface regularity index(SRI), corneal thickness, and corneal curvature between the two groups before surgery and at 1 d, 1, and 6 mo after surgery(all P>0.05). At 1 and 6 mo after surgery, the subjective visual quality score, the quality of life score, Schirmer I test(SⅠt)and tear film break-up time(BUT)in the SMILE group were better than that in the FS-LASIK group(all P<0.05). The incidence of complications in the SMILE group was lower than that in the FS-LASIK group at 6 mo after surgery(P=0.005).CONCLUSION: Both SMILE and FS-LASIK have good clinical effects in the treatment of myopia with astigmatism, but the SMILE could alleviate ocular surface injury, reduce the risk of complications and improve the quality of lifes for patients.
3.Occupational disease monitoring by the Korea Occupational Disease Surveillance Center: a narrative review
Dong-Wook LEE ; Inah KIM ; Jungho HWANG ; Sunhaeng CHOI ; Tae-Won JANG ; Insung CHUNG ; Hwan-Cheol KIM ; Jaebum PARK ; Jungwon KIM ; Kyoung Sook JEONG ; Youngki KIM ; Eun-Soo LEE ; Yangwoo KIM ; Inchul JEONG ; Hyunjeong OH ; Hyeoncheol OH ; Jea Chul HA ; Jeehee MIN ; Chul Gab LEE ; Heon KIM ; Jaechul SONG
The Ewha Medical Journal 2025;48(1):e9-
This review examines the challenges associated with occupational disease surveillance in Korea, particularly emphasizing the limitations of current data sources such as the Industrial Accident Compensation Insurance (IACI) statistics and special health examinations. The IACI system undercounts cases due to its emphasis on severe diseases and restrictions on approvals. Special health examinations, although they cover a broad workforce, are constrained by their annual scheduling, which leads to missed acute illnesses and subclinical conditions. The paper also explores the history of occupational disease surveillance in Korea, highlighting the fragmented and disease-specific approach of earlier systems. The authors introduce the newly established Korea Occupational Disease Surveillance Center (KODSC), a comprehensive nationwide system designed to gather, analyze, and interpret data on occupational diseases through a network of regional centers. By incorporating hospital-based surveillance and focusing on acute poisonings and other sentinel events, the KODSC aims to overcome the limitations of previous systems and promote collaboration with various agencies. Although it is still in the early stages of implementation, the KODSC demonstrates potential for improving data accuracy and contributing valuable insights for public health policy.
4.Reduced-intensity chemotherapy with tyrosine kinase inhibitor followed by allogeneic transplantation is effective in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia
Jung Min LEE ; Do Young KIM ; Hee Jeong CHO ; Joon Ho MOON ; Sang Kyun SOHN ; Ho Jin SHIN ; Young Rok DO ; Mi Hwa HEO ; Min Kyoung KIM ; Young Seob PARK ; Dong Won BAEK
The Korean Journal of Internal Medicine 2025;40(1):124-134
Background/Aims:
To determine the effectiveness of tyrosine kinase inhibitor (TKI) plus reduced-intensity therapy in adult patients with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph-positive ALL), this retrospective study compared treatment outcomes and induction mortality according to backbone regimen intensity.
Methods:
The data of 132 patients diagnosed with Ph-positive ALL were retrospectively collected from five centers. Patients received imatinib plus intensive chemotherapy (modified VPD, KALLA1407, or hyper-CVAD) or reduced-intensity chemotherapy (EWALL) for curative purposes. This study analyzed 117 patients, of which 35,22,46, and 14 received modified VPD, KALLA1407, hyper-CVAD, and EWALL, respectively. All patients used imatinib as a TKI.
Results:
The median age of the patients who received reduced-intensity chemotherapy was 64.4 years, while that of the patients with intensive regimens was 47.5 years. There was no induction death in the reduced-intensity group, while nine patients died in the intensive therapy group. Major molecular response achievement tended to be higher in the intensive chemotherapy group than in the reduced-intensity group. More patients in the intensive chemotherapy group received allogeneic stem cell transplantation (allo-SCT). There was no statistically significant difference in long-term survival between the two groups in terms of relapse-free survival and overall survival rates.
Conclusions
When imatinib plus reduced-intensity therapy was used as a frontline treatment, there was no inferiority in obtaining complete remission compared to imatinib plus intensive chemotherapy or significant difference in long-term survival. Since imatinib plus reduced-intensity therapy has limitations in obtaining a deep molecular response, proceeding to allo-SCT should be considered.
5.Characteristics and outcomes of portal vein thrombosis in patients with inflammatory bowel disease in Korea
Ki Jin KIM ; Su-Bin SONG ; Jung-Bin PARK ; June Hwa BAE ; Ji Eun BAEK ; Ga Hee KIM ; Min-Jun KIM ; Seung Wook HONG ; Sung Wook HWANG ; Dong-Hoon YANG ; Byong Duk YE ; Jeong-Sik BYEON ; Seung-Jae MYUNG ; Suk-Kyun YANG ; Chang Sik YU ; Yong-Sik YOON ; Jong-Lyul LEE ; Min Hyun KIM ; Ho-Su LEE ; Sang Hyoung PARK
The Korean Journal of Internal Medicine 2025;40(2):243-250
Background/Aims:
Portal vein thrombosis (PVT) frequently occurs in patients with inflammatory bowel disease (IBD), particularly when influenced by factors such as abdominal infections, IBD flare-ups, or surgical procedures. The implications of PVT range from immediate issues such as intestinal ischemia to long-term concerns including portal hypertension and its complications. However, there is a notable gap in comprehensive studies on PVT in IBD, especially with the increasing incidence of IBD in Asia. This research aimed to evaluate the clinical features and outcomes of PVT in patients with IBD at a leading hospital in South Korea.
Methods:
This retrospective analysis reviewed adult patients diagnosed with both IBD and PVT from 1989 to 2021 at a renowned South Korean medical center. The study focused on patient characteristics, specifics of PVT, administered treatments, and outcomes, all confirmed through enhanced CT scans.
Results:
A total of 78 patients met the study’s criteria. Notably, only 20.5% (16/78) were treated with oral anticoagulants; however, a vast majority (96.2%; 75/78) achieved complete radiographic resolution (CRR). When comparing patients receiving anticoagulants to those who did not, a significant preference for anticoagulant use was observed in cases where the main portal vein was affected, as opposed to just the left or right veins (p = 0.006). However, multivariable analysis indicated that neither anticoagulant use nor previous surgeries significantly impacted CRR.
Conclusions
Patients with IBD and PVT generally had favorable outcomes, regardless of anticoagulant use.
6.Fine particulate matter induces osteoclast-mediated bone loss in mice
Hye Young MUN ; Septika PRISMASARI ; Jeong Hee HONG ; Hana LEE ; Doyong KIM ; Han Sung KIM ; Dong Min SHIN ; Jung Yun KANG
The Korean Journal of Physiology and Pharmacology 2025;29(1):9-19
Fine particulate matter (FPM) is a major component of air pollution and has emerged as a significant global health concern owing to its adverse health effects. Previous studies have investigated the correlation between bone health and FPM through cohort or review studies. However, the effects of FPM exposure on bone health are poorly understood. This study aimed to investigate the effects of FPM on bone health and elucidate these effects in vitro and in vivo using mice. Micro-CT analysis in vivo revealed FPM exposure decreased bone mineral density, trabecular bone volume/total volume ratio, and trabecular number in the femurs of mice, while increasing trabecular separation. Histological analysis showed that the FPM-treated group had a reduced trabecular area and an increased number of osteoclasts in the bone tissue. Moreover, in vitro studies revealed that low concentrations of FPM significantly enhanced osteoclast differentiation. These findings further support the notion that short-term FPM exposure negatively impacts bone health, providing a foundation for further research on this topic.
7.Toxicity and efficacy study of a combination of two retinoic acids in an ApoE knockout mouse model of atherosclerosis
Da Som JEONG ; Ji-Young LEE ; Hyo-Jeong HAN ; Soo Min KO ; Dong Hyun LEE ; Yerin LEE ; Young-Sik PARK ; Byong-Cheol SHIN ; Woo-Chan SON
The Korean Journal of Physiology and Pharmacology 2025;29(2):179-189
Atherosclerosis is a major contributor to cardiovascular disease, characterized by inflammation and lipid accumulation in arterial walls, leading to plaque formation. Elevated low-density lipoprotein cholesterol is a primary risk factor for atherosclerosis. All-trans retinoic acid (ATRA), a metabolite of vitamin A, has demonstrated anti-inflammatory effects and potential in regulating vascular injury. 9-cisretinoic acid (9cRA) is an active metabolite of vitamin A and activates the retinoid X receptor. This study investigates whether potassium retinoate (PA9RA), a synthetic combination of ATRA and 9cRA, offers superior efficacy in treating atherosclerosis compared to established treatments such as clopidogrel and atorvastatin. Male ApoE -/- mice were fed a Western-type diet and treated with PA9RA, clopidogrel, or atorvastatin for 10 weeks. The body weight, organ weight, serum biochemistry, and histopathology, including atherosclerotic lesion area and liver steatosis were assessed. PA9RA treatment led to a significant reduction in body weight and inguinal fat, with the 45 mg/kg/day dose showing marked efficacy in decreasing atherosclerotic lesion size and ameliorating liver steatosis. Histopathological evaluation revealed decreased foam cell formation and improved liver histology in PA9RA-treated groups compared to controls. Notable side effects included epidermal hyperplasia and gastric hyperplasia at high doses of PA9RA. PA9RA exhibits superior efficacy over clopidogrel and atorvastatin in ameliorating atherosclerosis and fatty liver in ApoE –/–mice. This study highlights PA9RA's potential as a promising therapeutic agent for atherosclerosis. Further research is needed to elucidate its mechanisms of action and assess long-term safety and efficacy.
8.The Mechanism of Exercise Regulating Intestinal Flora in The Prevention and Treatment of Depression
Lei-Zi MIN ; Jing-Tong WANG ; Qing-Yuan WANG ; Yi-Cong CUI ; Rui WANG ; Xin-Dong MA
Progress in Biochemistry and Biophysics 2025;52(6):1418-1434
Depression, a prevalent mental disorder with significant socioeconomic burdens, underscores the urgent need for safe and effective non-pharmacological interventions. Recent advances in microbiome research have revealed the pivotal role of gut microbiota dysbiosis in the pathogenesis of depression. Concurrently, exercise, as a cost-effective and accessible intervention, has demonstrated remarkable efficacy in alleviating depressive symptoms. This comprehensive review synthesizes current evidence on the interplay among exercise, gut microbiota modulation, and depression, elucidating the mechanistic pathways through which exercise ameliorates depressive symptoms via the microbiota-gut-brain (MGB) axis. Depression is characterized by gut microbiota alterations, including reduced alpha and beta diversity, depletion of beneficial taxa (e.g., Bifidobacterium, Lactobacillus, and Coprococcus), and overgrowth of pro-inflammatory and pathogenic bacteria (e.g., Morganella, Klebsiella, and Enterobacteriaceae). Metagenomic analyses reveal disrupted metabolic functions in depressive patients, such as diminished synthesis of short-chain fatty acids (SCFAs), impaired tryptophan metabolism, and dysregulated bile acid conversion. For instance, Bifidobacterium longum deficiency correlates with reduced synthesis of neuroactive metabolites like homovanillic acid, while decreased Coprococcus abundance limits butyrate production, exacerbating neuroinflammation. Furthermore, elevated levels of indole derivatives from Clostridium species inhibit serotonin (5-HT) synthesis, contributing to depressive phenotypes. These dysbiotic profiles disrupt the MGB axis, triggering systemic inflammation, neurotransmitter imbalances, and hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. Exercise exerts profound effects on gut microbiota composition, diversity, and metabolic activity. Longitudinal studies demonstrate that sustained aerobic exercise increases alpha diversity, enriches SCFA-producing genera (e.g., Faecalibacterium prausnitzii, Roseburia, and Akkermansia), and suppresses pathobionts (e.g., Desulfovibrio and Streptococcus). For example, a meta-analysis of 25 trials involving 1 044 participants confirmed that exercise enhances microbial richness and restores the Firmicutes/Bacteroidetes ratio, a biomarker of metabolic health. Notably, endurance training promotes Veillonella proliferation, which converts lactate into propionate, enhancing energy metabolism and delaying fatigue. Exercise also strengthens intestinal barrier integrity by upregulating tight junction proteins (e.g., ZO-1, occludin), thereby reducing lipopolysaccharide (LPS) translocation and systemic inflammation. However, excessive exercise may paradoxically diminish microbial diversity and exacerbate intestinal permeability, highlighting the importance of moderate intensity and duration. Exercise ameliorates depressive symptoms through multifaceted interactions with the gut microbiota, primarily via 4 interconnected pathways. First, exercise mitigates neuroinflammation by elevating anti-inflammatory SCFAs such as butyrate, which suppresses NF-κB signaling to attenuate microglial activation and oxidative stress in the hippocampus. Animal studies demonstrate that voluntary wheel running reduces hippocampal TNF‑α and IL-17 levels in stress-induced depression models, while fecal microbiota transplantation (FMT) from exercised mice reverses depressive behaviors by modulating the TLR4/NF‑κB pathway. Second, exercise regulates neurotransmitter dynamics by enriching GABA-producing Lactobacillus and Bifidobacterium, thereby counteracting neuronal hyperexcitability. Aerobic exercise also enhances the abundance of Lactobacillus plantarum and Streptococcus thermophilus, which facilitate 5-HT and dopamine synthesis. Clinical trials reveal that 12 weeks of moderate exercise increases fecal Coprococcus and Blautia abundance, correlating with improved 5-HT bioavailability and reduced depression scores. Third, exercise normalizes HPA axis hyperactivity by reducing cortisol levels and restoring glucocorticoid receptor sensitivity. In rodent models, chronic stress-induced corticosterone elevation is reversed by probiotic supplementation (e.g., Lactobacillus), which enhances endocannabinoid signaling and hippocampal neurogenesis. Furthermore, exercise upregulates brain-derived neurotrophic factor (BDNF) via microbial metabolites like butyrate, promoting histone acetylation and synaptic plasticity. FMT experiments confirm that exercise-induced microbiota elevates prefrontal BDNF expression, reversing stress-induced neuronal atrophy. Fourth, exercise reshapes microbial metabolic crosstalk, diverting tryptophan metabolism toward 5-HT synthesis instead of neurotoxic kynurenine derivatives. Butyrate inhibits indoleamine 2,3-dioxygenase (IDO), a key enzyme in the kynurenine pathway linked to depression. Concurrently, exercise-induced Akkermansia enrichment enhances mucin production, fortifies the gut barrier, and reduces LPS-driven neuroinflammation. Collectively, these mechanisms underscore exercise as a potent modulator of the microbiota-gut-brain axis, offering a holistic approach to alleviating depression through microbial and neurophysiological synergy. Current evidence supports exercise as a potent adjunct therapy for depression, with personalized regimens (e.g., aerobic, resistance, or yoga) tailored to individual microbiota profiles. However, challenges remain in optimizing exercise prescriptions (intensity, duration, and type) and integrating them with probiotics, prebiotics, or FMT for synergistic effects. Future research should prioritize large-scale randomized controlled trials to validate causality, multi-omics approaches to decipher MGB axis dynamics, and mechanistic studies exploring microbial metabolites as therapeutic targets. The authors advocate for a paradigm shift toward microbiota-centric interventions, emphasizing the bidirectional relationship between physical activity and gut ecosystem resilience in mental health management. In conclusion, this review underscores exercise as a multifaceted modulator of the gut-brain axis, offering novel insights into non-pharmacological strategies for depression. By bridging microbial ecology, neuroimmunology, and exercise physiology, this work lays a foundation for precision medicine approaches targeting the gut microbiota to alleviate depressive disorders.
9.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration.
10.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration.

Result Analysis
Print
Save
E-mail