1.Rhodiolae Crenulatae Radix et Rhizoma protects brain microvascular endothelial cells from ischemia and hypoxia injury by regulating PI3K/AKT/GSK3β pathway.
Li TANG ; Qiu-Yue YANG ; Hong-Fa CHENG ; Ya-Hui XIE ; Qiu-Xia ZHANG
China Journal of Chinese Materia Medica 2025;50(11):3127-3136
This study elucidates the mechanism of Rhodiolae Crenulatae Radix et Rhizoma(RCRR) in protecting brain microvascular endothelial cells from oxygen-glucose deprivation(OGD) injury and reveals the modern pharmacological mechanism of RCRR's traditional use in nourishing Qi and promoting blood circulation to protect endothelial cells. The scratch assay was employed to assess the migratory capacity of endothelial cells. Immunofluorescence and Western blot techniques were employed to assess the protein expression of tight junction proteins zonula occludens-1(ZO-1), occludin, claudin-5, and proteins of the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)/glycogen synthase kinase-3beta(GSK3β) pathway. The results demonstrated that 63 bioactive components and 125 potential core targets of RCRR were identified from the ETCM, TCMBank, and SwissTargetPrediction databases, as well as from the literature. A total of 1 708 brain microvascular endothelial cell-related targets were identified from the GeneCards and OMIM databases, and 52 targets were obtained by intersecting drug components with cell targets. The protein-protein interaction(PPI) network analysis revealed that AKT1, epidermal growth factor receptor(EGFR), matrix metalloproteinase 9(MMP9), estrogen receptor 1(ESR1), proto-oncogene tyrosine-protein kinase(SRC), peroxisome proliferator-activated receptor gamma(PPARG), GSK3β, and matrix metalloproteinase 2(MMP2) were considered hub genes. The KEGG enrichment analysis identified the PI3K/AKT pathway as the primary signaling pathway. Cell experiments demonstrated that RCRR-containing serum could enhance the migratory capacity of brain microvascular endothelial cells and the expression of tight junction proteins following OGD injury, which may be associated with the downregulation of the PI3K/AKT/GSK3β pathway. This study elucidates the pharmacological mechanism of RCRR in protecting brain microvascular endothelial cells through network pharmacology, characterized by multiple components and targets. These findings were validated through in vitro experiments and provide important ideas and references for further research into the molecular mechanisms of RCRR in protecting brain microvascular endothelial cells.
Endothelial Cells/cytology*
;
Glycogen Synthase Kinase 3 beta/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Signal Transduction/drug effects*
;
Brain/metabolism*
;
Humans
;
Animals
;
Rhizome/chemistry*
;
Microvessels/metabolism*
;
Brain Ischemia/drug therapy*
2.In Vitro Angiogenesis Effect of Xuefu Zhuyu Decoction () and Vascular Endothelial Growth Factor: A Comparison Study.
Fan LIN ; Bin-Ling CHEN ; Yi-Zheng WANG ; Dong GAO ; Jun SONG ; T J KAPTCHUK ; Ke-Ji CHEN
Chinese journal of integrative medicine 2018;24(8):606-612
OBJECTIVETo compare the angiogenesis behaviors of vascular endothelial growth factor (VEGF) and Chinese medicine Xuefu Zhuyu Decoction (, XZD) treatments.
METHODSHuman microvascular endothelial cells (HMEC-1) were treated with various concentrations of either XZD-containing serum (XZD-CS) or VEGF for 24, 48, and 72 h, respectively. Cell viability, proliferation, migration, adhesion, and in vitro tube formation assays were used to assess their angiogenic effects.
RESULTSVEGF promoted all cellular phases involved in angiogenesis including cell viability, proliferation, migration, adhesion, and tube formation (<0.05 or <0.01). Unlike the continuous promotion effects of VEGF at the above stages, XZD inhibited cell viability and proliferation (<0.05 or <0.01) and only promoted tube formation in the early phase of angiogenesis (<0.01).
CONCLUSIONSThese two medications promote different angiogenesis behaviors, which might be an important reason for their distinct therapeutic profile in clinical usage.
Cell Adhesion ; drug effects ; Cell Cycle ; drug effects ; Cell Line ; Cell Movement ; drug effects ; Cell Proliferation ; drug effects ; Cell Survival ; drug effects ; Drugs, Chinese Herbal ; pharmacology ; Endothelial Cells ; drug effects ; metabolism ; Humans ; Microvessels ; cytology ; Neovascularization, Physiologic ; drug effects ; Vascular Endothelial Growth Factor A ; pharmacology
3.Expression of midkine and microvessel density in salivary adenoid cystic carcinoma.
Jun CHEN ; Jimei LI ; Weil LI ; Hongmei HU
West China Journal of Stomatology 2016;34(2):189-193
OBJECTIVEThis study aimed to investigate the expression of midkine (MK) and microvessel density (MVD) in patients with salivary adenoid cystic carcinoma (SACC) and its clinical significance, as well as detect the correlation between the expression of MK and MVD in SACC.
METHODSImmunohistochemistry analysis (SP method) for MK and MVD were performed on 60 cases of SACC and 26 cases of normal salivary gland tissue. The expression of MK and MVD, as well as the correlation between the expression of MK and MVD in SACC were detected.
RESULTSIn SACC, the MK expression rate was 70.0% (42/60), and MK was not expressed in normal tissue. Statistical significance was found between SACC and normal tissue (P<0.05). The MVD values in SACC and normal salivary gland tissues were 38.73 +/- 8.96 and 11.15 +/- 3.33, respectively. These values were statistically significant (P<0.05). The expression levels of MK and MVD were unrelated to age, gender, and type in SACC (P>0.05), but correlated with tumor size, lymph node metastasis, and tumor-node-metastasis in SACC (P<0.05). The expression of MK and MVD was positively correlated with SACC (r=0.560, P<0.05).
CONCLUSIONSACC is correlated with the expression of MK protein and the increase in MVD, which may be some of the early diagnostic markers in SACC.
Carcinoma, Adenoid Cystic ; enzymology ; pathology ; Cytokines ; genetics ; metabolism ; Humans ; Immunohistochemistry ; Lymphatic Metastasis ; Microvessels ; Nerve Growth Factors ; Salivary Gland Neoplasms ; enzymology ; pathology ; Salivary Glands ; enzymology
4.Huoxue Anxin Recipe () promotes myocardium angiogenesis of acute myocardial infarction rats by up-regulating miR-210 and vascular endothelial growth factor.
Jie WANG ; Yun ZHANG ; Yong-Mei LIU ; Li-Li GUO ; Ping WU ; Yu DONG ; Guang-Jun WU
Chinese journal of integrative medicine 2016;22(9):685-690
OBJECTIVETo investigate the microRNAs (miRNAs) expression profile of acute myocardial infarction (AMI) rats and the regulating effects of Huoxue Anxin Recipe (, HAR) on angiogenesis-related miRNAs and genes.
METHODSForty-five Wistar rats were randomly assigned to 3 groups according to a random number table: sham, AMI, and AMI+HAR groups (15 in each group). AMI rats were established by ligation of the left descending coronary artery. HAR was intragastrically administered to rats of the AMI+HAR group for successive 21 days since modeling, meanwhile the same volume of 0.9% normal saline was administered to rats of the sham and AMI groups. Doppler echocardiography was used for noninvasive cardiac function test. Hematoxylin and eosin staining was used to observe the histopathological change. miRNAs expression profile was detected by quantitative realtime polymerase chain reaction (qRT-PCR). The mRNA and protein expressions of vascular endothelial growth factor (VEGF), and a target gene of miR-210 was further detected by qRT-PCR and Western blot, respectively. The microvessels density of myocardium was evaluated by CD31 immunostaining.
RESULTSCompared with the sham group, ejection fraction (EF) and fractional shortening (FS) values were decreased significantly in the AMI group (P<0.01), while the infarction area and the interstitial collagen deposition were increased obviously. As for the AMI+HAR group, EF and FS values were increased significantly (P<0.05 vs. AMI group), and the infarction area was reduced and the interstitial collagen deposition were alleviated significantly. Total of 23 miRNAs in the AMI group expressed differently by at least 1.5 folds compared with those in the sham group; 5 miRNAs in the AMI+HAR group expressed differently by at least 1.5 folds compared with those in the AMI group. Among them, miR-210 was low in the AMI group and high in the AMI+HAR group. The relative mRNA and protein expressions of VEGF were decreased significantly in the AMI group (P<0.05 vs. sham group), and increased significantly in the AMI+HAR group (P<0.01 vs. AMI group). CD31 expression area and optical intensity were decreased significantly in the AMI group (P<0.05 vs. sham group), and increased significantly in the AMI+HAR group (P<0.01 vs. AMI group).
CONCLUSIONSHAR could reduce the infarction area, alleviate the interstitial fibrosis and improve the cardiac function of AMI rats. Those effects could be related to promoting myocardium angiogenesis of HAR by up-regulating miR-210 and VEGF.
Animals ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Heart Function Tests ; Male ; MicroRNAs ; genetics ; metabolism ; Microvessels ; pathology ; Myocardial Infarction ; drug therapy ; genetics ; physiopathology ; Myocardium ; pathology ; Neovascularization, Physiologic ; drug effects ; genetics ; RNA, Messenger ; genetics ; metabolism ; Rats, Wistar ; Up-Regulation ; drug effects ; Vascular Endothelial Growth Factor A ; genetics ; metabolism
5.Effect of EphB4/EphrinB2 reverse signal on angiogenesis induced by Xuefu Zhuyu Capsule () containing serum in human microvascular endothelial cell 1.
Jing-Si ZHANG ; Yi-Zheng WANG ; Ya-Qiong HU ; Fan LIN ; Dong GAO ; Jun SONG ; Ted J KAPTCHUK ; Ke-Ji CHEN
Chinese journal of integrative medicine 2016;22(8):605-610
OBJECTIVETo evaluate the effect of Xuefu Zhuyu Capsule ()-containing serum (XFZY-CS) on EphB4/ephrinB2 and its reverse signal in human microvascular endothelial cell-1 (HMEC-1).
METHODSXFZY-CS and the blank control serum were collected. HMEC-1 cells were randomly assigned to 6 groups including the concentration 1.25%, 2.5%, and 5% XFZY-CS groups and their blank serum control ones. The angiogenesis effect of XFZY-CS was tested with an in vitro tube formation assay and the best condition of pro-angiogenesis was determined. The effect of XFZY-CS on EphB4/ephrinB2 and the reverse signal were determined by Western blot and real-time quantitative polymerase chain reaction, respectively; we also confifirmed the results through activating and inhibiting the reverse signal by EphB4/fc and pyrophosphatase/ phosphodiesterase2 (PP2).
RESULTSXFZY-CS promoted angiogenesis at the concentration of 2.5% corresponding serum after being cultured for 48 h, while inhibited angiogenesis at the concentration of 5% after culturing for 48 and 72 h. Under the 2.5% serum concentration, XFZY up-regulated the expression of EphB4-mRNA at 12 h (P<0.05), and down-regulates its expression at 24 h (P<0.01). Protein expression of EphB4 was apparently up-regulated at 12 h and down-regulated at 24 h. The phosphorylation of ephrinB2 increased at 9 h (P<0.05). In addition, 2.5% XFZY-CS played a similar role as the reverse signaling activator EphB4/Fc ranging from 0.5 to 5 μg/mL (P>0.05). XFZY-CS also reduced the inhibitive effect of PP2 in limited periods.
CONCLUSIONSEphB4/ephrinB2 was the upstream signal in the process of angiogenesis and its reverse signaling was responsible for XFZY's effect on promoting angiogenesis.
Adult ; Capsules ; Drugs, Chinese Herbal ; pharmacology ; Endothelial Cells ; drug effects ; metabolism ; Ephrin-B2 ; metabolism ; Gene Expression Regulation ; drug effects ; Humans ; Male ; Microvessels ; pathology ; Middle Aged ; Neovascularization, Physiologic ; drug effects ; genetics ; Phosphoric Diester Hydrolases ; metabolism ; RNA, Messenger ; genetics ; metabolism ; Receptor, EphB4 ; genetics ; metabolism ; Serum ; metabolism ; Time Factors ; Young Adult
6.Antitumor Effect of Ganoderma lipsiense Extract on Triple-negative Breast Cancer Model Mice and Mechanism Study.
Zi-hao QI ; Jiao MENG ; Zi-liang WANG ; Hui-zhen SUN ; Yang GONG
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(3):366-369
OBJECTIVETo study the inhibitory effect and mechanism of Ganoderma lipsiense extract (GLE) on the growth of triple-negative breast cancer (TNBC) cell line MDA-MB-231-HM in a mouse model.
METHODSThe mouse model of TNBC was established by subcutaneous injection of 1.5 x 10(6) of MDA-MB-231-HM cells into BALB/c-nu mouse. Twenty successfully modeled mice were divided into the GLE group and the negative control group according to random digit table, 10 in each group. GLE (0.2 mL 100 mg/mL) was peritoneally injected to mice in the GLE group, while equal dose of normal saline was peritoneally injected to mice in the negative control group. The medication was administered once per 3 days and discontinued after 45 days. The CD34 expression was detected using immunohistochemical assay for counting microvessels. Meanwhile, expressions of thrombospondin 1 (TSP-1) and cyclin D1 were detected using immunohistochemical assay.
RESULTSThe average weight was obviously lower in the GLE group than in the negative control group [(0.33 ± 0.16) g vs (0.68 ± 0.37)g, P < 0.05]. The tumor inhibition rate was 51.4% in the GLE group. The volume of transplanted tumor was obviously lesser in the GLE group than in the negative control group (P < 0.05). Results of immunohistochemical staining showed, the microvessel density (MVD) under every field was (20.7 ± 2.1), TSP-1 positive cell count was (66.2 ± 9.2), cyclin D1 positive cell count was (33.8 ± 16.4) in the GLE group, and they were 34.0 ± 2.0, 24.0 ± 6.6, and 168.2 ± 32.6, respectively in the negative control group. There was statistical difference in all indices between the two groups (P < 0.05).
CONCLUSIONGLE could inhibit malignant proliferation of tumor cells by suppressing angiogenesis of blood vessels in tumor tissues and regulating cell cycles, thereby inhibiting TNBC.
Animals ; Biological Products ; pharmacology ; Cell Line, Tumor ; Cyclin D1 ; metabolism ; Disease Models, Animal ; Ganoderma ; chemistry ; Humans ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Microvessels ; Neoplasm Transplantation ; Neovascularization, Pathologic ; prevention & control ; Random Allocation ; Thrombospondin 1 ; metabolism ; Triple Negative Breast Neoplasms ; drug therapy
7.Expressions of Inhibitors of DNA Binding-1 and Matrix Metalloproteinase-9 in Colorectal Adenocarcinoma Tissues and Their Correlations with Microvessel Density.
Xue-Liang WU ; Jun XUE ; Li-Kun WANG ; Dong-Dong YANG ; Ming QU ; Fei GUO ; Guang-Yuan SUN ; Lei HAN ; Rui-Min YANG
Acta Academiae Medicinae Sinicae 2016;38(6):696-701
Objective To explore the expressions of inhibitors of DNA binding-1 (Id-1) and matrix metalloproteinase-9 (MMP-9) in colorectal carcinoma tissues and its correlation with microvessel density (MVD). Methods The expressions of Id-1 and MMP-9 as well as CD34-labelled MVD in colorectal adenocarcinoma tissues (n=50) and normal adjacent tissues (n=50) were examined by immunohistochemistry. Results The positive expressions of Id-1 and MMP-9 were seen in 72.00% (36/50) and 78.00%(39/50) of colorectal adenocarcinoma tissues,which were significantly higher than those [24.00%(12/50) and 28.00% (14/50)] in normal adjacent tissues (P=0.000). The MVD value (17.22±2.08) in colorectal adenocarcinoma tissues was significantly higher than that (5.36±2.17) in normal adjacent tissues (P=0.000). The expressions of Id-1 and MMP-9 and MVD were significantly correlated with serosa invasion,TNM stage,carcinoembryonic antigen(+),lymph node metastasis,vascular invasion,and liver metastasis (all P<0.05) but not with the patient's age,gender,tumor size,and differentiation degree (all P>0.05). The MVD value with Id-1 and MMP-9 positive expression were significantly higher than those with Id-1 and MMP-9 negative expression (all P=0.000). The expression of Id-1 in colorectal adenocarcinoma tissues showed significantly positive correlation with that of MMP-9 (r=0.429,P=0.000). Cox multivariate analysis showed that Id-1 and MMP-9 expressions were independent prognostic factors for colorectal carcinoma. Conclusions The high expressions of Id-1 and MMP-9 have high correlations with the development and progression of colorectal adenocarcinoma and have positive correlation with MVD. Both of them may be involved in the microvascular generation and the invasion and hematogenous metastasis of colorectal carcinoma.
Adenocarcinoma
;
blood supply
;
metabolism
;
Colorectal Neoplasms
;
blood supply
;
metabolism
;
Disease Progression
;
Humans
;
Immunohistochemistry
;
Inhibitor of Differentiation Protein 1
;
metabolism
;
Liver Neoplasms
;
Lymphatic Metastasis
;
Matrix Metalloproteinase 9
;
metabolism
;
Microcirculation
;
Microvessels
;
Neovascularization, Pathologic
8.Role of RAGE in lipopolysaccharide-induced cytoskeletal changes in mouse pulmonary microvascular endothelial cells.
Xiao-Yan ZHOU ; Wei-Jin ZHANG ; Qiao-Bing HUANG ; Xiao-Hua GUO
Journal of Southern Medical University 2015;35(1):6-11
OBJECTIVETo investigate lipopolysaccharide (LPS)-induced changes of cytoskeletal filamentous actin in primary isolated pulmonary microvascular endothelial cells (PMVECs) from wild-type and RAGE knock-out mouse.
METHODSThe lungs of wild-type and RAGE knock-out mice were digested with collagenase type I to obtain endothelial cells purified by anti-CD31-coupled magnetic beads. The PMVEC identified by factor VIII labeling were stimulated with LPS at different concentrations and the changes of filamentous actin were observed by confocal microscopy.
RESULTSThe cultured primary cells showed typical endothelial cell phenotype as examined with factor VIII labeling. LPS stimulation caused rearrangement of the cytoskeletal filament F-actin in wild-type mouse PMVECs with stress fiber formation, but such changes were not obvious in RAGE knock-out mouse PMVECs.
CONCLUSIONMouse PMVECs of a high purity can be obtained by immune magnetic beads. RAGE is involved in LPS-induced destruction of mouse PMVEC cytoskeletons.
Actins ; metabolism ; Animals ; Cells, Cultured ; Cytoskeleton ; metabolism ; Endothelial Cells ; cytology ; Lipopolysaccharides ; Lung ; cytology ; Mice ; Mice, Knockout ; Microvessels ; cytology ; Phenotype ; Receptor for Advanced Glycation End Products ; Receptors, Immunologic ; genetics ; metabolism
9.Adverse Prognostic Impact of Bone Marrow Microvessel Density in Multiple Myeloma.
Nuri LEE ; Hyewon LEE ; Soo Young MOON ; Ji Yeon SOHN ; Sang Mee HWANG ; Ok Jin YOON ; Hye Sun YOUN ; Hyeon Seok EOM ; Sun Young KONG
Annals of Laboratory Medicine 2015;35(6):563-569
BACKGROUND: Angiogenesis is important for the proliferation and survival of multiple myeloma (MM) cells. Bone marrow (BM) microvessel density (MVD) is a useful marker of angiogenesis and is determined by immunohistochemical staining with anti-CD34 antibody. This study investigated the prognostic impact of MVD and demonstrated the relationship between MVD and previously mentioned prognostic factors in patients with MM. METHODS: The study included 107 patients with MM. MVD was assessed at initial diagnosis in a blinded manner by two hematopathologists who examined three CD34-positive hot spots per patient and counted the number of vessels in BM samples. Patients were divided into three groups according to MVD tertiles. Cumulative progression-free survival (PFS) and overall survival (OS) curves, calculated by using Kaplan-Meier method, were compared among the three groups. Prognostic impact of MVD was assessed by calculating Cox proportional hazard ratio (HR). RESULTS: Median MVDs in the three groups were 16.8, 33.9, and 54.7. MVDs were correlated with other prognostic factors, including beta2-microglobulin concentration, plasma cell percentage in the BM, and cancer stage according to the International Staging System. Multivariate Cox regression analysis showed that high MVD was an independent predictor of PFS (HR=2.57; 95% confidence interval, 1.22-5.42; P=0.013). PFS was significantly lower in the high MVD group than in the low MVD group (P=0.025). However, no difference was observed in the OS (P=0.428). CONCLUSIONS: Increased BM MVD is a marker of poor prognosis in patients newly diagnosed with MM. BM MVD should be assessed at the initial diagnosis of MM.
Aged
;
Antigens, CD34/metabolism
;
Bone Marrow/metabolism/*pathology
;
Disease-Free Survival
;
Female
;
Humans
;
Immunohistochemistry
;
Kaplan-Meier Estimate
;
Male
;
Microvessels/*physiopathology
;
Middle Aged
;
Multiple Myeloma/*diagnosis/mortality
;
Neoplasm Staging
;
Neovascularization, Pathologic
;
Plasma Cells/cytology
;
Prognosis
;
Proportional Hazards Models
;
Regression Analysis
;
Risk Factors
10.Subcurative radiation significantly increases cell proliferation, invasion, and migration of primary glioblastoma multiforme in vivo.
Adarsh SHANKAR ; Sanath KUMAR ; A S M ISKANDER ; Nadimpalli R S VARMA ; Branislava JANIC ; Ana DECARVALHO ; Tom MIKKELSEN ; Joseph A FRANK ; Meser M ALI ; Robert A KNIGHT ; Stephen BROWN ; Ali S ARBAB
Chinese Journal of Cancer 2014;33(3):148-158
Tumor cell proliferation, infiltration, migration, and neovascularization are known causes of treatment resistance in glioblastoma multiforme (GBM). The purpose of this study was to determine the effect of radiation on the growth characteristics of primary human GBM developed in a nude rat. Primary GBM cells grown from explanted GBM tissues were implanted orthotopically in nude rats. Tumor growth was confirmed by magnetic resonance imaging on day 77 (baseline) after implantation. The rats underwent irradiation to a dose of 50 Gy delivered subcuratively on day 84 postimplantation (n = 8), or underwent no radiation (n = 8). Brain tissues were obtained on day 112 (nonirradiated) or day 133 (irradiated). Immunohistochemistry was performed to determine tumor cell proliferation (Ki-67) and to assess the expression of infiltration marker (matrix metalloproteinase-2, MMP-2) and cell migration marker (CD44). Tumor neovascularization was assessed by microvessel density using von-Willebrand factor (vWF) staining. Magnetic resonance imaging showed well-developed, infiltrative tumors in 11 weeks postimplantation. The proportion of Ki-67-positive cells in tumors undergoing radiation was (71 +/- 15)% compared with (25 +/- 12)% in the nonirradiated group (P = 0.02). The number of MMP-2-positive areas and proportion of CD44-positive cells were also high in tumors receiving radiation, indicating great invasion and infiltration. Microvessel density analysis did not show a significant difference between nonirradiated and irradiated tumors. Taken together, we found that subcurative radiation significantly increased proliferation, invasion, and migration of primary GBM. Our study provides insights into possible mechanisms of treatment resistance following radiation therapy for GBM.
Animals
;
Brain Neoplasms
;
metabolism
;
pathology
;
radiotherapy
;
Cell Line, Tumor
;
Cell Movement
;
radiation effects
;
Cell Proliferation
;
radiation effects
;
Female
;
Glioblastoma
;
metabolism
;
pathology
;
radiotherapy
;
Humans
;
Hyaluronan Receptors
;
metabolism
;
Immunohistochemistry
;
Ki-67 Antigen
;
metabolism
;
Magnetic Resonance Imaging
;
Matrix Metalloproteinase 2
;
metabolism
;
Microvessels
;
pathology
;
Neoplasm Transplantation
;
Neovascularization, Pathologic
;
pathology
;
Radiation Tolerance
;
Radiotherapy, High-Energy
;
Rats
;
Rats, Nude

Result Analysis
Print
Save
E-mail