1.Evaluation of pharmacokinetics and metabolism of three marine-derived piericidins for guiding drug lead selection.
Weimin LIANG ; Jindi LU ; Ping YU ; Meiqun CAI ; Danni XIE ; Xini CHEN ; Xi ZHANG ; Lingmin TIAN ; Liyan YAN ; Wenxun LAN ; Zhongqiu LIU ; Xuefeng ZHOU ; Lan TANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):614-629
This study investigates the pharmacokinetics and metabolic characteristics of three marine-derived piericidins as potential drug leads for kidney disease: piericidin A (PA) and its two glycosides (GPAs), glucopiericidin A (GPA) and 13-hydroxyglucopiericidin A (13-OH-GPA). The research aims to facilitate lead selection and optimization for developing a viable preclinical candidate. Rapid absorption of PA and GPAs in mice was observed, characterized by short half-lives and low bioavailability. Glycosides and hydroxyl groups significantly enhanced the absorption rate (13-OH-GPA > GPA > PA). PA and GPAs exhibited metabolic instability in liver microsomes due to Cytochrome P450 enzymes (CYPs) and uridine diphosphoglucuronosyl transferases (UGTs). Glucuronidation emerged as the primary metabolic pathway, with UGT1A7, UGT1A8, UGT1A9, and UGT1A10 demonstrating high elimination rates (30%-70%) for PA and GPAs. This rapid glucuronidation may contribute to the low bioavailability of GPAs. Despite its low bioavailability (2.69%), 13-OH-GPA showed higher kidney distribution (19.8%) compared to PA (10.0%) and GPA (7.3%), suggesting enhanced biological efficacy in kidney diseases. Modifying the C-13 hydroxyl group appears to be a promising approach to improve bioavailability. In conclusion, this study provides valuable metabolic insights for the development and optimization of marine-derived piericidins as potential drug leads for kidney disease.
Animals
;
Male
;
Mice
;
Aquatic Organisms/chemistry*
;
Biological Availability
;
Cytochrome P-450 Enzyme System/metabolism*
;
Glucuronosyltransferase/metabolism*
;
Microsomes, Liver/metabolism*
;
Molecular Structure
;
Biological Products/pharmacokinetics*
;
Pyridines/pharmacokinetics*
2.Comparative study on metabolites in rat liver microsomes, urine, feces and bile between Shuganning Injection and Scutellariae Radix extract.
Feng HE ; Yang ZHOU ; Yue PENG ; Lin ZHENG ; Ling WANG ; Yong HUANG ; Ming-Yan CHI
China Journal of Chinese Materia Medica 2024;49(23):6500-6511
This study aims to compare the metabolic differences of baicalin and its analogues between Shuganning Injection and Scutellariae Radix extract. Twelve SD rats were randomly divided into a Shuganning Injection group and a Scutellariae Radix extract group, with 6 rats in each group. Their liver microsomes were incubated with the drugs, and then the samples were collected. Ultra performance liquid chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) was used to analyze the prototype components and metabolites of the drugs in liver microsomes of each group. Another 12 SD rats were also divided into a Shuganning Injection group and a Scutellariae Radix extract group, with 6 rats in each group. The rats were administrated with 4.2 mL·kg~(-1) Shuganning Injection or Scutellariae Radix extract by tail vein injection. After 48 h, the rat urine, feces, and bile were collected, and UPLC-Q-Exactive Orbitrap-MS was used to analyze the prototype components and metabolites in each biological sample. The results showed that 5 prototype components and 8 metabolites of Shuganning Injection and Scutellariae Radix extract were identified in liver microsomes. A total of 5 prototype components were identified in rat urine, feces, and bile separately. Fifteen metabolites were identified in the urine, 9 metabolites in the feces, and 12 metabolites in the bile. The differences of metabolic pathways and number of metabolites of baicalin were compared between Shuganning Injection and Scutellariae Radix extract. For both Shuganning Injection and Scutellariae Radix extract, the metabolites of baicalin or baicalein in rat liver microsomes, urine, bile, and feces were mainly formed glucuronic acid conjugates, and there were a small amount of glucose conjugates and methylation products. Differences were found in the number and types of metabolites of baicalin in urine samples between Shuganning Injection and Scutellariae Radix extract, indicating that differences existed in metabolism between the two. This suggests that the other components in the formula lead to changes of metabolites in vivo.
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Microsomes, Liver/chemistry*
;
Drugs, Chinese Herbal/administration & dosage*
;
Feces/chemistry*
;
Scutellaria baicalensis/chemistry*
;
Male
;
Bile/chemistry*
;
Flavonoids/metabolism*
;
Urine/chemistry*
;
Chromatography, High Pressure Liquid
;
Mass Spectrometry
;
Plant Extracts
3.Effects of Gukang Capsules on activity and protein expression of hepatic cytochrome P450 enzymes in rats.
Chang YANG ; Jing LI ; Jia SUN ; Ding-Yan LU ; Shuai-Shuai CHEN ; Yong-Jun LI ; Yong-Lin WANG ; Ting LIU
China Journal of Chinese Materia Medica 2022;47(21):5936-5943
Gukang Capsules are often used in combination with drugs to treat fractures, osteoarthritis, and osteoporosis. Cytochrome P450(CYP450) mainly exists in the liver and participates in the oxidative metabolism of a variety of endogenous and exogenous substances and serves as an important cause of drug-metabolic interactions and adverse reactions. Therefore, it is of great significance to study the effect of Gukang Capsules on the activity and expression of CYP450 for increasing its clinical rational medication and improving the safety of drug combination. In this study, the Cocktail probe method was used to detect the changes in the activities of CYP1A2, CYP3A2, CYP2C11, CYP2C19, CYP2D4, and CYP2E1 in rat liver after treatment with high-, medium-and low-dose Gukang Capsules. The rat liver microsomes were extracted by the calcium chloride method, and protein expression of the above six CYP isoform enzymes was detected by Western blot. The results showed that the low-dose Gukang Capsules could induce CYP3A2 and CYP2D4 in rats, medium-dose Gukang Capsules had no effect on them, and high-dose Gukang Capsules could inhibit them in rats. The high-dose Gukang Capsules did not affect CYP2C11 in rats, but low-and medium-dose Gukang Capsules could induce CYP2C11 in rats. Gukang Capsules could inhibit CYP2C19 in rats and induce CYP1A2 in a dose-independent manner, but did not affect CYP2E1. If Gukang Capsules were co-administered with CYP1A2, CYP2C19, CYP3A2, CYP2C11, and CYP2D4 substrates, the dose should be adjusted to avoid drug interactions.
Rats
;
Animals
;
Cytochrome P-450 CYP1A2/metabolism*
;
Cytochrome P-450 CYP2C19
;
Cytochrome P-450 CYP2E1/pharmacology*
;
Rats, Sprague-Dawley
;
Cytochrome P-450 Enzyme System/metabolism*
;
Microsomes, Liver
;
Liver
;
Cytochrome P-450 CYP3A/metabolism*
4.Study on metabolic dynamics,metabolic enzyme phenotype and species difference of hepatic and intestinal microsome of psoralidin.
Zi-Fei QIN ; Bei-Bei ZHANG ; Han XING ; Pei-le WANG ; Jing YANG ; Xiao-Jian ZHANG ; Zhi-Hong YAO ; Xin-Sheng YAO
China Journal of Chinese Materia Medica 2021;46(13):3410-3421
This study aims to investigate metabolic activities of psoralidin in human liver microsomes( HLM) and intestinal microsomes( HIM),and to identify cytochrome P450 enzymes( CYPs) and UDP-glucuronosyl transferases( UGTs) involved in psoralidin metabolism as well as species differences in the in vitro metabolism of psoralen. First,after incubation serial of psoralidin solutions with nicotinamide adenine dinucleotide phosphate( NADPH) or uridine 5'-diphosphate-glucuronic acid( UDPGA)-supplemented HLM or HIM,two oxidic products( M1 and M2) and two conjugated glucuronides( G1 and G2) were produced in HLM-mediated incubation system,while only M1 and G1 were detected in HIM-supplemented system. The CLintfor M1 in HLM and HIM were 104. 3,and57. 6 μL·min~(-1)·mg~(-1),respectively,while those for G1 were 543. 3,and 75. 9 μL·min~(-1)·mg~(-1),respectively. Furthermore,reaction phenotyping was performed to identify the main contributors to psoralidin metabolism after incubation of psoralidin with NADPH-supplemented twelve CYP isozymes( or UDPGA-supplemented twelve UGT enzymes),respectively. The results showed that CYP1 A1( 39. 5 μL·min~(-1)·mg~(-1)),CYP2 C8( 88. 0 μL·min~(-1)·mg~(-1)),CYP2 C19( 166. 7 μL·min~(-1)·mg~(-1)),and CYP2 D6( 9. 1 μL·min~(-1)·mg~(-1)) were identified as the main CYP isoforms for M1,whereas CYP2 C19( 42. 0 μL·min~(-1)·mg~(-1)) participated more in producing M2. In addition,UGT1 A1( 1 184. 4 μL·min~(-1)·mg~(-1)),UGT1 A7( 922. 8 μL·min~(-1)·mg~(-1)),UGT1 A8( 133. 0 μL·min~(-1)·mg~(-1)),UGT1 A9( 348. 6 μL·min~(-1)·mg~(-1)) and UGT2 B7( 118. 7 μL·min~(-1)·mg~(-1)) played important roles in the generation of G1,while UGT1 A9( 111. 3 μL·min~(-1)·mg~(-1)) was regarded as the key UGT isozyme for G2. Moreover,different concentrations of psoralidin were incubated with monkey liver microsomes( MkLM),rat liver microsomes( RLM),mice liver microsomes( MLM),dog liver microsomes( DLM) and mini-pig liver microsomes( MpLM),respectively. The obtained CLintwere used to evaluate the species differences.Phase Ⅰ metabolism and glucuronidation of psoralidinby liver microsomes showed significant species differences. In general,psoralidin underwent efficient hepatic and intestinal metabolisms. CYP1 A1,CYP2 C8,CYP2 C19,CYP2 D6 and UGT1 A1,UGT1 A7,UGT1 A8,UGT1 A9,UGT2 B7 were identified as the main contributors responsible for phase Ⅰ metabolism and glucuronidation,respectively. Rat and mini-pig were considered as the appropriate model animals to investigate phase Ⅰ metabolism and glucuronidation,respectively.
Animals
;
Benzofurans
;
Coumarins
;
Dogs
;
Glucuronides
;
Glucuronosyltransferase/metabolism*
;
Kinetics
;
Mice
;
Microsomes, Liver/metabolism*
;
Phenotype
;
Rats
;
Species Specificity
;
Swine
;
Swine, Miniature/metabolism*
5.Research Progress on Metabolite Identification of Synthetic Cannabinoid New Psychoactive Substances.
Le LI ; Jun Bo ZHAO ; Hui YAN ; Wan Hui LIU ; Ping XIANG ; He Jian WU
Journal of Forensic Medicine 2021;37(4):459-459
Synthetic cannabinoids are currently a class of new psychoactive substances with the largest variety and most abused. Metabolite identification research can provide basic data for monitoring synthetic cannabinoids abuse, which is the current research hotspot. The main trend of structural modification of synthetic cannabinoid is to replace the fluorine atom on pentyl indole or indazole cyclopentyl with hydrogen atom, which greatly improves the biological activity of the compound. The main metabolic reactions include hydroxylation, fluoropentyl oxidative, ester hydrolyze, amide hydrolysis. Liquid chromatography-high resolution mass spectrometry has become the preferred choice for the structural identification of metabolites. This review mainly summarizes research on metabolism software prediction and human hepatocyte model, human liver microsomes model, rat in vivo model, zebrafish model and fungus C. elegans model in metabolite identification based on the structure and classification of synthetic cannabinoids.
Animals
;
Caenorhabditis elegans
;
Cannabinoids
;
Chromatography, Liquid
;
Microsomes, Liver/chemistry*
;
Rats
;
Zebrafish
6.Metabolism of New Psychoactive Substances 4F-MDMB-BUTINACA in Zebrafish.
Lin Na YUE ; Ping XIANG ; Fen Yun SONG ; Bao Hua SHEN ; Hui YAN
Journal of Forensic Medicine 2021;37(4):493-499
Objective To study the metabolic transformation pathways of 4F-MDMB-BUTINACA in vivo by establishing zebrafish models. Methods Six adult zebrafish were randomly divided into blank control group and experimental group, with three fish in each group. After the zebrafish in the experimental group were exposed to 1 μg/mL 4F-MDMB-BUTINACA for 24 h, they were transferred to clean water and cleaned three times, then pretreated for instrumental analysis. The zebrafish in blank control group were not exposed to 4F-MDMB-BUTINACA. Mass spectrometry and structural analysis of 4F-MDMB-BUTINACA and its metabolites were conducted by liquid chromatography-high resolution mass spectrometry and Mass Frontier software. Results A total of twenty-six metabolites of 4F-MDMB-BUTINACA were identified in zebrafish, including eighteen phase Ⅰ metabolites and eight phase Ⅱ metabolites. The main metabolic pathways of phase Ⅰ metabolites of 4F-MDMB-BUTINACA in zebrafish were ester hydrolysis, N-dealkylation, oxidative defluorination and hydroxylation, while the main metabolic pathway of phase Ⅱ metabolites was glucuronidation. Conclusion Metabolite Md24 (ester hydrolysis) and Md25 (ester hydrolysis combined with dehydrogenation) would be recommended to be potentially good biomarkers for abuse of 4F-MDMB-BUTINACA.
Animals
;
Cannabinoids
;
Chromatography, Liquid
;
Illicit Drugs
;
Microsomes, Liver/chemistry*
;
Zebrafish
7.Study on potential hepatotoxicity of rhein in Rhei Radix et Rhizoma based on liver metabolism.
Qi WANG ; Ya-Dan WANG ; Jian-Bo YANG ; Yue LIU ; Hai-Ruo WEN ; Shuang-Cheng MA
China Journal of Chinese Materia Medica 2020;45(2):412-417
The bilirubin metabolism mediated by the phase Ⅱ metabolizing enzyme UGT1A1 in the liver was evaluated to study the potential hepatotoxicity risk based on investigation on the inhibitory effect of rhein and its metabolites on the UGT1A1 enzyme in Rhei Radix et Rhizoma. Firstly, in vitro liver microsomes incubation was used to initiate the phase Ⅱ metabolic reaction to investigate the inhibitory effect of rheinon UGT1A1 enzyme. Secondly, the phase Ⅰ and phase Ⅱ metabolic reactions were initiated to investigate the hepatotoxicity risk of rhein metabolites. It was found that the rhein and its phase Ⅱ metabolites had no significant inhibitory effect on UGT1A1 enzyme, but its phase Ⅰ metabolites significantly reduced UGT1A1 enzyme activity. Based on the metabolites analysis, it is speculated that the rhein phase Ⅰ metabolite rheinhydroxylate and its tautomers have certain hepatotoxicity risks, while the toxicity risk induced by the prototype and phase Ⅱ metabolites of rheinglucoside, rheinglucuronic acid and rhein sulfate is small.
Anthraquinones/toxicity*
;
Chemical and Drug Induced Liver Injury
;
Drugs, Chinese Herbal/toxicity*
;
Glucuronosyltransferase/metabolism*
;
Humans
;
Liver/enzymology*
;
Microsomes, Liver/drug effects*
;
Rhizome
8.Investigation of metabolism of HN-1 isolated from Millettia pachyloba in vivo and in vitro.
Cai-Xia DOU ; Xiang QIU ; Li WAN
China Journal of Chinese Materia Medica 2019;44(20):4529-4537
Ultra-fast performance liquid chromatography-mass spectrometry( UFLC-MS/MS) was used to study the anti-inflammatory active ingredient of Millettia pachyloba,6-methoxy-8,8-dimethyl-3-( 2,4,5-trimethoxyphenyl)-4 H,8 H-pyrano[2,3-f]chromen-4-one( HN-1),in liver microsomes of rats,mice,rhesus monkeys,Beagle dogs and humans metabolic stability,and compare the metabolic differences between different species. The metabolic phenotype in human liver microsomes was determined by chemical inhibitor method. Using UPLC-Q-TOF-MS/MS detection method,the in vitro metabolites of various liver microsomes were preliminarily inferred by comparing the samples incubated for 0 min and 60 min in vitro. The metabolites of HN-1 in SD rats were presumed by comparing feces,urine,plasma blanks and samples after administration. The results showed that the metabolism of HN-1 in various liver microsomes was stable,and the metabolic properties of dog and human liver microsomes were the closest. It is mainly catabolized by CYP1 A1,CYP2 D6 and CYP3 A4 isoenzymes in human liver microsomes. The metabolites of HN-1 in vitro and in vivo,including 3 in vitro metabolites and5 in vivo metabolites,were preliminarily estimated. The results laid the foundation for further pharmacological studies of HN-1.
Animals
;
Chromatography, High Pressure Liquid
;
Dogs
;
Drugs, Chinese Herbal
;
Humans
;
Mice
;
Microsomes, Liver
;
Millettia
;
Rats
;
Rats, Sprague-Dawley
;
Tandem Mass Spectrometry
9.Prediction of potential drug interactions of apigenin based on molecular docking and in vitro inhibition experiments.
Qi WANG ; Ya-Dan WANG ; Jian-Bo YANG ; Yue LIU ; Hai-Ruo WEN ; Shuang-Cheng MA
China Journal of Chinese Materia Medica 2019;44(18):4043-4047
The purpose of this study was to investigate the effect of apigenin on UGT1 A1 enzyme activity and to predict the potential drug-drug interaction of apigenin in clinical use. First,on the basis of previous experiments,the binding targets and binding strength of apigenin to UGT1 A1 enzyme were predicted by computer molecular docking method. Then the inhibitory effect of apigenin on UGT1 A1 enzyme was evaluated by in vitro human liver microsomal incubation system. Molecular docking results showed that apigenin was docked into the active region of UGT1 A1 enzyme protein F,consistent with the active region of bilirubin docking,with moderate affinity. Apigenin flavone mother nucleus mainly interacted with amino acid residues ILE343 and VAL345 to form hydrophobic binding Pi-Alkyl. At the same time,the hydroxyl group on the mother nucleus and the amino acid residue LYS346 formed an additional hydrogen bond,which increased the binding of the molecule to the protein. These results suggested that the flavonoid mother nucleus structure had a special structure binding to the enzyme protein UGT1 A1,and the introduction of hydroxyl groups into the mother nucleus can increase the binding ability. In vitro inhibition experiments showed that apigenin had a moderate inhibitory effect on UGT1 A1 enzyme in a way of competitive inhibition,which was consistent with the results of molecular docking. The results of two experiments showed that apigenin was the substrate of UGT1 A1 enzyme,which could inhibit the activity of UGT1 A1 enzyme competitively,and there was a risk of drug interaction between apigenin and UGT1 A1 enzyme substrate in clinical use.
Apigenin/chemistry*
;
Bilirubin/chemistry*
;
Drug Interactions
;
Glucuronosyltransferase/metabolism*
;
Humans
;
Hydrogen Bonding
;
Microsomes, Liver/drug effects*
;
Molecular Docking Simulation
10.Study on hepatotoxicity of physcion based on liver metabolism in vitro.
Qi WANG ; Ya-Dan WANG ; Jian-Bo YANG ; Yue LIU ; Hai-Ruo WEN ; Shuang-Cheng MA
China Journal of Chinese Materia Medica 2019;44(11):2367-2372
To evaluate the hepatotoxicity risks of physcion on the basis of the bilirubin metabolism mediated by glucuronidation of UDP-glucuronosyltransferases 1A1(UGT1A1 enzyme). The monomers were added into the rat liver microsomes to test the hepatotoxicity by using bilirubin as UGT1A1 enzyme substrate, with apparent inhibition constant K_i as the evaluation index. Liver microsome incubation in vitro was adopted to initiate phase Ⅱ metabolic reaction and investigate the inhibitory effect of physcion. Then the phase Ⅰ and Ⅱ metabolic reactions were initiated to investigate the comprehensive inhibition of metabolites and prototype components. The results showed that when only the phase Ⅱ reaction was initiated, physcion directly acted on the UGT1A1 enzyme in a prototype form, exhibited weak inhibition and the inhibition type was mixed inhibition; When the phase Ⅰ and Ⅱ reactions were initiated simultaneously, the inhibitory effects of physcion on UGT1A1 enzyme became strong and the inhibition type was mixed inhibition, suggesting that physcion had phase Ⅰ and Ⅱ metabolic processes, and the metabolites had strong inhibitory effect on UGT1A1 enzyme. This experiment preliminarily proved that the metabolites of physcion may be the main components to induce hepatotoxicity.
Animals
;
Chemical and Drug Induced Liver Injury
;
Emodin
;
analogs & derivatives
;
toxicity
;
Glucuronosyltransferase
;
metabolism
;
Kinetics
;
Microsomes, Liver
;
drug effects
;
Rats

Result Analysis
Print
Save
E-mail