1.Effectiveness of three auxiliary irrigation methods for cleaning the internal walls of root canals of curved isolated teeth.
Chaoying WEN ; Wenxin ZUO ; Wen LUO ; Fei HE
West China Journal of Stomatology 2023;41(5):554-562
OBJECTIVES:
This study aimed to compare the effectiveness of ultrasound and acoustic and laser cleaning of curved root canals.
METHODS:
A total of 92 molars with independent root canals with a curvature of 20°-40° were prepared and standardized at 04 25# and stained with gentian violet solution for 72 h. Among them, 52 were randomly divi-ded into four groups for final rinsing (n=13): NI group, PUI group, EDDY group, and PIPS group. Ten samples in each group were cut horizontally along the long axis perpendicular to the root and divided into curved upper, curved, and apical segments. Images were taken with a stereomicroscope and Image J measurements were taken to calculate the depth of rinse penetration. The remaining three samples from each group were split along the long axis of the dentin, photographed by scanning electron microscope to record the dentin tubule exposure and staining layer, and scored for staining layer by double-blind method. SPSS 26.0 software was used to perform statistical analysis and select the best flushing method. An extra 40 samples were randomly divided into four groups for detection of flushing fluid penetration depth (n=10): 10, 20, 30, and 40 s.
RESULTS:
In the upper part, the mean depth of infiltration was not significantly different between the experimental and control groups (P>0.05). The PIPS group had a significantly lower smear layer score than the control group and the EDDY group (P<0.01). In the curved segment, the mean depth of infiltration was significantly greater in the PUI group than in the control group (P<0.05); the tarnish layer score was lower in each experimental group than in the control group. At the top, the mean depth of infiltration was greater in the PUI and PIPS groups than in the control group (P<0.05), and the smear layer score was lower in the PIPS group than in the other groups (P<0.05). After the time was changed, the depth of infiltration of PUI increased only in the apical segment as the flushing time increased.
CONCLUSIONS
The PUI and PIPS methods facilitate the penetration of irrigation solution into the dentin canal in curved root canals, especially in the apical segment. The PIPS technique is effective in removing the smear layer in curved root canals.
Humans
;
Dental Pulp Cavity
;
Microscopy, Electron, Scanning
;
Root Canal Irrigants
;
Root Canal Preparation/methods*
;
Smear Layer
;
Sodium Hypochlorite
;
Therapeutic Irrigation/methods*
;
Double-Blind Method
2.Application of Autofluorescence for Confocal Microscopy to Aid in Archaeoparasitological Analyses
Johnica Jo MORROW ; Christian ELOWSKY
The Korean Journal of Parasitology 2019;57(6):581-585
Confocal laser scanning microscopy (CLSM) was used to examine archaeoparasitological specimens from coprolites associated with La Cueva de los Muertos Chiquitos (CMC) located near present-day Durango, Mexico. The eggs for 4 different types of parasites recovered from CMC coprolites were imaged using CLSM to assist with identification efforts. While some of the parasite eggs recovered from CMC coprolites were readily identified using standard light microscopy (LM), CLSM provided useful data for more challenging identifications by highlighting subtle morphological features and enhancing visualization of parasite egg anatomy. While other advanced microscopy techniques, such as scanning electron microscopy (SEM), may also detect cryptic identifying characters, CLSM is less destructive to the specimens. Utilizing CLSM allows for subsequent examinations, such as molecular analyses, that cannot be performed following SEM sample preparation and imaging. Furthermore, CLSM detects intrinsic autofluorescence molecules, making improved identification independent of resource and time-intensive protocols. These aspects of CLSM make it an excellent method for assisting in taxonomic identification and for acquiring more detailed images of archaeoparasitological specimens.
Eggs
;
Methods
;
Mexico
;
Microscopy
;
Microscopy, Confocal
;
Microscopy, Electron, Scanning
;
Ovum
;
Parasites
3.Study of Recellularized Human Acellular Arterial Matrix Repairs Porcine Biliary Segmental Defects
Wei LIU ; Sheng Ning ZHANG ; Zong Qiang HU ; Shi Ming FENG ; Zhen Hui LI ; Shu Feng XIAO ; Hong Shu WANG ; Li LI
Tissue Engineering and Regenerative Medicine 2019;16(6):653-665
BACKGROUND: With the popularity of laparoscopic cholecystectomy, common bile duct injury has been reported more frequently. There is no perfect method for repairing porcine biliary segmental defects.METHODS: After the decellularization of human arterial blood vessels, the cells were cultured with GFP⁺ (carry green fluorescent protein) porcine bile duct epithelial cells. The growth and proliferation of porcine bile duct epithelial cells on the human acellular arterial matrix (HAAM) were observed by hematoxylin-eosin (HE) staining, electron microscopy, and immunofluorescence. Then, the recellularized human acellular arterial matrix (RHAAM) was used to repair biliary segmental defects in the pig. The feasibility of it was detected by magnetic resonance cholangiopancreatography, liver function and blood routine changes, HE staining, immunofluorescence, real-time quantitative PCR (RT-qPCR), and western blot.RESULTS: After 4 weeks (w) of co-culture of HAAM and GFP? porcine bile duct epithelial cells, GFP⁺ porcine bile duct epithelial cells grew stably, proliferated, and fused on HAAM. Bile was successfully drained into the duodenum without bile leakage or biliary obstruction. Immunofluorescence detection showed that GFP-positive bile duct cells could still be detected after GFP-containing bile duct cells were implanted into the acellular arterial matrix for 8 w. The implanted bile duct cells can successfully resist bile invasion and protect the acellular arterial matrix until the newborn bile duct is formed.CONCLUSION: The RHAAM can be used to repair biliary segmental defects in pigs, which provides a new idea for the clinical treatment of common bile duct injury.
Bile
;
Bile Ducts
;
Blood Vessels
;
Blotting, Western
;
Cholangiopancreatography, Magnetic Resonance
;
Cholecystectomy, Laparoscopic
;
Coculture Techniques
;
Common Bile Duct
;
Duodenum
;
Epithelial Cells
;
Fluorescent Antibody Technique
;
Humans
;
Infant, Newborn
;
Liver
;
Methods
;
Microscopy, Electron
;
Polymerase Chain Reaction
;
Swine
;
Tissue Engineering
4.Specification of Bacteriophage Isolated Against Clinical Methicillin-Resistant Staphylococcus Aureus
Ahmad NASSER ; Reza AZIZIAN ; Mohsen TABASI ; Jamil Kheirvari KHEZERLOO ; Fatemah Sadeghpour HERAVI ; Morovat Taheri KALANI ; Norkhoda SADEGHIFARD ; Razieh AMINI ; Iraj PAKZAD ; Amin RADMANESH ; Farid Azizi JALILIAN
Osong Public Health and Research Perspectives 2019;10(1):20-24
OBJECTIVES: The emergence of resistant bacteria is being increasingly reported around the world, potentially threatening millions of lives. Amongst resistant bacteria, methicillin-resistant Staphylococcus aureus (MRSA) is the most challenging to treat. This is due to emergent MRSA strains and less effective traditional antibiotic therapies to Staphylococcal infections. The use of bacteriophages (phages) against MRSA is a new, potential alternate therapy. In this study, morphology, genetic and protein structure of lytic phages against MRSA have been analysed. METHODS: Isolation of livestock and sewage bacteriophages were performed using 0.4 μm membrane filters. Plaque assays were used to determine phage quantification by double layer agar method. Pure plaques were then amplified for further characterization. Sulfate-polyacrylamide gel electrophoresis and random amplification of polymorphic DNA were run for protein evaluation, and genotyping respectively. Transmission electron microscope was also used to detect the structure and taxonomic classification of phage visually. RESULTS: Head and tail morphology of bacteriophages against MRSA were identified by transmission electron microscopy and assigned to the Siphoviridae family and the Caudovirales order. CONCLUSION: Bacteriophages are the most abundant microorganism on Earth and coexist with the bacterial population. They can destroy bacterial cells successfully and effectively. They cannot enter mammalian cells which saves the eukaryotic cells from lytic phage activity. In conclusion, phage therapy may have many potential applications in microbiology and human medicine with no side effect on eukaryotic cells.
Agar
;
Bacteria
;
Bacteriophages
;
Caudovirales
;
Classification
;
DNA
;
Electrophoresis
;
Eukaryotic Cells
;
Head
;
Humans
;
Livestock
;
Membranes
;
Methicillin Resistance
;
Methicillin-Resistant Staphylococcus aureus
;
Methods
;
Microscopy, Electron, Scanning Transmission
;
Microscopy, Electron, Transmission
;
Sewage
;
Siphoviridae
;
Staphylococcal Infections
;
Tail
5.Epithelial defect repair in the auricle and auditory meatus by grafting with cultured adipose-derived mesenchymal stem cell aggregate-extracellular matrix.
Wen-Jin ZHANG ; Lei-Guo MING ; Jian-Jun SUN
Chinese Medical Journal 2019;132(6):680-689
BACKGROUND:
Several patients experience persistent otorrhea after a flawless surgical procedure because of insufficient epithelial healing. Several efforts, such as autologous tissue allograft and xenograft, have been made to halt otorrhea. However, a stable technology to induce temporal epithelial repair is yet to be established. Therefore, this study aims to investigate whether implantation of seeding adipose-derived mesenchymal stem cell (ADMSC) aggregates on extracellular matrix (ECM; herein, ADMSC aggregate-ECM) into damaged skin wound promotes skin regeneration.
METHODS:
ADMSC aggregate-ECM was prepared using a previously described procedure that isolated ADMSCs from rabbits and applied to the auricle and auditory meatus wound beds of New Zealand white rabbits. Wound healing was assessed by general observation and hematoxylin and eosin (H&E) staining. Secretion of growth factor of the tissue was evaluated by western blotting. Two other groups, namely, ECM and control, were used. Comparisons of three groups were conducted by one-way analysis of variance analysis.
RESULTS:
ADMSCs adhered tightly to the ECM and quickly formed cell sheets. At 2 weeks, general observation and H&E staining indicated that the wound healing rates in the ADMSC aggregate-ECM (69.02 ± 6.36%) and ECM (59.32 ± 4.10%) groups were higher than that in the control group (43.74 ± 12.15%; P = 0.005, P < 0.001, respectively) in ear auricle excisional wounds. At 7 weeks, The scar elevation index was evidently reduced in the ADMSC aggregate-ECM (2.08 ± 0.87) and ECM (2.31 ± 0.33) groups compared with the control group (4.06 ± 0.45; P < 0.001, P < 0.001, respectively). In addition, the scar elevation index of the ADMSC aggregate-ECM group reached the lowest rate 4 weeks in advance. In auditory meatus excisional wounds, the ADMSC aggregate-ECM group had the largest range of normal skin-like structure at 4 weeks. The ADMSC aggregate-ECM and ECM groups secreted increased amounts of growth factors that contributed to skin regeneration at weeks 1 and 2, respectively.
CONCLUSIONS
ADMSC aggregate-ECM and ECM are effective repair materials for wound healing, especially ADMSC aggregate-ECM. This approach will provide a meaningful experimental basis for mastoid epithelium repair in subsequent clinical trials.
Adipose Tissue
;
cytology
;
Animals
;
Cell Differentiation
;
physiology
;
Cell Proliferation
;
physiology
;
Cells, Cultured
;
Ear Auricle
;
cytology
;
Extracellular Matrix
;
chemistry
;
Flow Cytometry
;
Mesenchymal Stem Cell Transplantation
;
methods
;
Mesenchymal Stem Cells
;
cytology
;
Microscopy, Electron, Scanning
;
Osteogenesis
;
physiology
;
Rabbits
;
Real-Time Polymerase Chain Reaction
6.Surface Film Formation in Static-Fermented Rice Vinegar: A Case Study
Jeong Hyun YUN ; Jae Ho KIM ; Jang Eun LEE
Mycobiology 2019;47(2):250-255
In the present study, we aimed to determine the cause of surface film formation in three rice vinegars fermented using the traditional static fermentation method. The pH and total acidity of vinegar were 3.0–3.3 and 3.0–8.7%, respectively, and acetic acid was the predominant organic acid present. Colonies showing a clear halo on GYC medium were isolated from the surface film of all vinegars. Via 16S rDNA sequencing, all of the isolates were identified as Acetobacter pasteurianus. Furthermore, field-emission scanning electron microscopy analysis showed that the bacterial cells had a rough surface, were rod-shaped, and were ∼1 × 2 µm in size. Interestingly, cells of the isolate from one of the vinegars were surrounded with an extremely fine threadlike structure. Thus, our results suggest that formation of the surface film in rice vinegar was attributable not to external contamination, to the production of bacterial cellulose by A. pasteurianus to withstand the high concentrations of acetic acid generated during fermentation. However, because of the formation of a surface film in vinegar is undesirable from an industrial perspective, further studies should focus on devising a modified fermentation process to prevent surface film formation and consequent quality degradation.
Acetic Acid
;
Acetobacter
;
Cellulose
;
DNA, Ribosomal
;
Fermentation
;
Hydrogen-Ion Concentration
;
Methods
;
Microscopy, Electron, Scanning
7.Differentiation Capacity of Monocyte-Derived Multipotential Cells on Nanocomposite Poly(e-caprolactone)-Based Thin Films
Iro KOLIAKOU ; Eleni GOUNARI ; Maria NERANTZAKI ; Eleni PAVLIDOU ; Dimitrios BIKIARIS ; Martha KALOYIANNI ; George KOLIAKOS
Tissue Engineering and Regenerative Medicine 2019;16(2):161-175
BACKGROUND: Lonocyte-derived multipotential cells (MOMCs) include progenitors capable of differentiation into multiple cell lineages and thus represent an ideal autologous transplantable cell source for regenerative medicine. In this study, we cultured MOMCs, generated from mononuclear cells of peripheral blood, on the surface of nanocomposite thin films. METHODS: For this purpose, nanocomposite Poly(e-caprolactone) (PCL)-based thin films containing either 2.5 wt% silica nanotubes (SiO2ntbs) or strontium hydroxyapatite nanorods (SrHAnrds), were prepared using the spin-coating method. The induced differentiation capacity of MOMCs, towards bone and endothelium, was estimated using flow cytometry, real-time polymerase chain reaction, scanning electron microscopy and fluorescence microscopy after cells' genetic modification using the Sleeping Beauty Transposon System aiming their observation onto the scaffolds. Moreover, Wharton's Jelly Mesenchymal Stromal Cells were cultivated as a control cell line, while Human Umbilical Vein Endothelial Cells were used to strengthen and accelerate the differentiation procedure in semi-permeable culture systems. Finally, the cytotoxicity of the studied materials was checked with MTT assay. RESULTS: The highest differentiation capacity of MOMCs was observed on PCL/SiO2ntbs 2.5 wt% nanocomposite film, as they progressively lost their native markers and gained endothelial lineage, in both protein and transcriptional level. In addition, the presence of SrHAnrds in the PCL matrix triggered processes related to osteoblast bone formation. CONCLUSION: To conclude, the differentiation of MOMCs was selectively guided by incorporating SiO2ntbs or SrHAnrds into a polymeric matrix, for the first time.
Autografts
;
Beauty
;
Cell Line
;
Cell Lineage
;
Durapatite
;
Endothelium
;
Flow Cytometry
;
Human Umbilical Vein Endothelial Cells
;
Mesenchymal Stromal Cells
;
Methods
;
Microscopy, Electron, Scanning
;
Microscopy, Fluorescence
;
Nanocomposites
;
Nanotubes
;
Osteoblasts
;
Osteogenesis
;
Polymers
;
Real-Time Polymerase Chain Reaction
;
Regenerative Medicine
;
Silicon Dioxide
;
Strontium
;
Wharton Jelly
8.Radially patterned polycaprolactone nanofibers as an active wound dressing agent
Dongwoo SHIN ; Min Sup KIM ; Chae Eun YANG ; Won Jai LEE ; Tai Suk ROH ; Wooyeol BAEK
Archives of Plastic Surgery 2019;46(5):399-404
BACKGROUND: The objectives of this study were to design polycaprolactone nanofibers with a radial pattern using a modified electrospinning method and to evaluate the effect of radial nanofiber deposition on mechanical and biological properties compared to non-patterned samples. METHODS: Radially patterned polycaprolactone nanofibers were prepared with a modified electrospinning method and compared with randomly deposited nanofibers. The surface morphology of samples was observed under scanning electron microscopy (SEM). The tensile properties of nanofibrous mats were measured using a tabletop uniaxial testing machine. Fluorescence-stained human bone marrow stem cells were placed along the perimeter of the radially patterned and randomly deposited. Their migration toward the center was observed on days 1, 4, and 7, and quantitatively measured using ImageJ software. RESULTS: Overall, there were no statistically significant differences in mechanical properties between the two types of polycaprolactone nanofibrous mats. SEM images of the obtained samples suggested that the directionality of the nanofibers was toward the central area, regardless of where the nanofibers were located throughout the entire sample. Florescence images showed stronger fluorescence inside the circle in radially aligned nanofibers, with significant differences on days 4 and 7, indicating that migration was quicker along radially aligned nanofibers than along randomly deposited nanofibers. CONCLUSIONS: In this study, we successfully used modified electrospinning to fabricate radially aligned nanofibers with similar mechanical properties to those of conventional randomly aligned nanofibers. In addition, we observed faster migration along radially aligned nanofibers than along randomly deposited nanofibers. Collectively, the radially aligned nanofibers may have the potential for tissue regeneration in combination with stem cells.
Bandages
;
Bone Marrow
;
Fluorescence
;
Humans
;
Methods
;
Microscopy, Electron, Scanning
;
Nanofibers
;
Polymers
;
Regeneration
;
Stem Cells
;
Wound Healing
;
Wounds and Injuries
9.Decontamination methods to restore the biocompatibility of contaminated titanium surfaces
Seong Ho JIN ; Eun Mi LEE ; Jun Beom PARK ; Kack Kyun KIM ; Youngkyung KO
Journal of Periodontal & Implant Science 2019;49(3):193-204
PURPOSE: The reaction of cells to a titanium implant depends on the surface characteristics of the implant which are affected by decontamination. The aim of this study was to evaluate the cytocompatibility of titanium disks treated with various decontamination methods, using salivary bacterial contamination with dental pellicle formation as an in vitro model. METHODS: Sand-blasted and acid-etched (SA) titanium disks were used. Three control groups (pristine SA disks [SA group]; salivary pellicle-coated SA disks [pellicle group]; and biofilm-coated, untreated SA disks [NT group]) were not subjected to any decontamination treatments. Decontamination of the biofilm-coated disks was performed by 14 methods, including ultrasonic instruments, rotating instruments, an air-powder abrasive system, a laser, and chemical agents. MG63 cells were cultured in the presence of the treated disks. Cell proliferation assays were performed on days 2 and 5 of cell culture, and cell morphology was analyzed by immunofluorescence and scanning electron microscopy (SEM). A vascular endothelial growth factor (VEGF) assay was performed on day 5 of culture. RESULTS: The cell proliferation assay revealed that all decontaminated disks, except for the 2 groups treated using a plastic tip, showed significantly less cell proliferation than the SA group. The immunofluorescence and SEM analyses revealed that most groups showed comparable cell density, with the exception of the NT group, in which the cell density was lower and bacterial residue was observed. Furthermore, the cells grown with tetracycline-treated titanium disks showed significantly lower VEGF production than those in the SA group. CONCLUSIONS: None of the decontamination methods resulted in cytocompatibility similar to that of pristine SA titanium. However, many methods caused improvement in the biocompatibility of the titanium disks in comparison with the biofilm-coated, untreated titanium disks. This suggests that decontamination is indispensable for the treatment of peri-implantitis, even if the original biocompatibility cannot be restored.
Biocompatible Materials
;
Cell Count
;
Cell Culture Techniques
;
Cell Proliferation
;
Decontamination
;
Dental Implants
;
Dental Pellicle
;
Fluorescent Antibody Technique
;
In Vitro Techniques
;
Methods
;
Microscopy, Electron, Scanning
;
Peri-Implantitis
;
Plastics
;
Titanium
;
Ultrasonics
;
Vascular Endothelial Growth Factor A
10.Helicobacter pylori inhibited cell proliferation in human periodontal ligament fibroblasts through the Cdc25C/CDK1/cyclinB1 signaling cascade
Huanying LI ; Dongsheng LIANG ; Naiming HU ; Xingzhu DAI ; Jianing HE ; Hongmin ZHUANG ; Wanghong ZHAO
Journal of Periodontal & Implant Science 2019;49(3):138-147
PURPOSE: Several studies have shown that the oral cavity is a secondary location for Helicobacter pylori colonization and that H. pylori is associated with the severity of periodontitis. This study investigated whether H. pylori had an effect on the periodontium. We established an invasion model of a standard strain of H. pylori in human periodontal ligament fibroblasts (hPDLFs), and evaluated the effects of H. pylori on cell proliferation and cell cycle progression. METHODS: Different concentrations of H. pylori were used to infect hPDLFs, with 6 hours of co-culture. The multiplicity of infection in the low- and high-concentration groups was 10:1 and 100:1, respectively. The Cell Counting Kit-8 method and Ki-67 immunofluorescence were used to detect cell proliferation. Flow cytometry, quantitative real-time polymerase chain reaction, and western blots were used to detect cell cycle progression. In the high-concentration group, the invasion of H. pylori was observed by transmission electron microscopy. RESULTS: It was found that H. pylori invaded the fibroblasts, with cytoplasmic localization. Analyses of cell proliferation and flow cytometry showed that H. pylori inhibited the proliferation of periodontal fibroblasts by causing G2 phase arrest. The inhibition of proliferation and G2 phase arrest were more obvious in the high-concentration group. In the low-concentration group, the G2 phase regulatory factors cyclin dependent kinase 1 (CDK1) and cell division cycle 25C (Cdc25C) were upregulated, while cyclin B1 was inhibited. However, in the high-concentration group, cyclin B1 was upregulated and CDK1 was inhibited. Furthermore, the deactivated states of tyrosine phosphorylation of CDK1 (CDK1-Y15) and serine phosphorylation of Cdc25C (Cdc25C-S216) were upregulated after H. pylori infection. CONCLUSIONS: In our model, H. pylori inhibited the proliferation of hPDLFs and exerted an invasive effect, causing G2 phase arrest via the Cdc25C/CDK1/cyclin B1 signaling cascade. Its inhibitory effect on proliferation was stronger in the high-concentration group.
Blotting, Western
;
CDC2 Protein Kinase
;
Cell Count
;
Cell Cycle
;
Cell Proliferation
;
Coculture Techniques
;
Colon
;
Cyclin B1
;
Cytoplasm
;
Fibroblasts
;
Flow Cytometry
;
Fluorescent Antibody Technique
;
G2 Phase
;
Helicobacter pylori
;
Helicobacter
;
Humans
;
Methods
;
Microscopy, Electron, Transmission
;
Mouth
;
Periodontal Ligament
;
Periodontitis
;
Periodontium
;
Phosphorylation
;
Real-Time Polymerase Chain Reaction
;
Serine
;
Tyrosine

Result Analysis
Print
Save
E-mail