1.Tetrahydropalmatine acts on α7nAChR to regulate inflammation and polarization of BV2 microglia.
Yan-Jun WANG ; Guo-Liang DAI ; Pei-Yao CHEN ; Hua-Xi HANG ; Xin-Fang BIAN ; Yu-Jie CHEN ; Wen-Zheng JU
China Journal of Chinese Materia Medica 2025;50(11):3117-3126
Based on the α7 nicotinic acetylcholine receptor(α7nAChR), this study examined how tetrahydropalmatine(THP) affected BV2 microglia exposed to lipopolysaccharide(LPS), aiming to clarify the possible mechanism underlying the anti-depression effect of THP from the perspectives of preventing inflammation and regulating polarization. First, after molecular docking and determination of the content of Corydalis saxicola Bunting total alkaloids, THP was initially identified as a possible anti-depression component. The BV2 microglia model of inflammation was established with LPS. BV2 microglia were allocated into a normal group, a model group, low-and high-dose(20 and 40 μmol·L~(-1), respectively) THP groups, and a THP(20 μmol·L~(-1))+α7nAChR-specific antagonist MLA(1 μmol·L~(-1)) group. The CCK-8 assay was used to screen the safe concentration of THP. A light microscope was used to examine the morphology of the cells. Western blot and immunofluorescence were used to determine the expression of α7nAChR. qRT-PCR was performed to determine the mRNA levels of inducible nitric oxide synthase(iNOS), cluster of differentiation 86(CD86), suppressor of cytokine signaling 3(SOCS3), arginase-1(Arg-1), cluster of differentiation 206(CD206), tumor necrosis factor(TNF)-α, interleukin(IL)-6, and IL-1β. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. The experimental results showed that THP at concentrations of 40 μmol·L~(-1) and below had no effect on BV2 microglia. THP improved the morphology of BV2 microglia, significantly up-regulated the protein level of α7nAChR, significantly down-regulated the mRNA levels of iNOS, CD86, SOCS3, TNF-α, IL-6, and IL-1β, significantly up-regulated the mRNA levels of Arg-1 and CD206, and dramatically lowered the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. However, the antagonist MLA abolished the above-mentioned ameliorative effects of THP on LPS-treated BV2 microglia. As demonstrated by the aforementioned findings, THP protected LPS-treated BV2 microglia by regulating the M1/M2 polarization and preventing inflammation, which might be connected to the regulation of α7nAChR on BV2 microglia.
Berberine Alkaloids/chemistry*
;
alpha7 Nicotinic Acetylcholine Receptor/chemistry*
;
Microglia/metabolism*
;
Mice
;
Animals
;
Cell Line
;
Corydalis/chemistry*
;
Humans
;
Molecular Docking Simulation
;
Inflammation/drug therapy*
;
Nitric Oxide Synthase Type II/immunology*
;
Tumor Necrosis Factor-alpha/immunology*
2.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
3.Stem-leaf saponins of Panax notoginseng attenuate experimental Parkinson's disease progression in mice by inhibiting microglia-mediated neuroinflammation via P2Y2R/PI3K/AKT/NFκB signaling pathway.
Hui WU ; Chenyang NI ; Yu ZHANG ; Yingying SONG ; Longchan LIU ; Fei HUANG ; Hailian SHI ; Zhengtao WANG ; Xiaojun WU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):43-53
Stem-leaf saponins from Panax notoginseng (SLSP) comprise numerous PPD-type saponins with diverse pharmacological properties; however, their role in Parkinson's disease (PD), characterized by microglia-mediated neuroinflammation, remains unclear. This study evaluated the effects of SLSP on suppressing microglia-driven neuroinflammation in experimental PD models, including the 1-methyl-4-phenylpyridinium (MPTP)-induced mouse model and lipopolysaccharide (LPS)-stimulated BV-2 microglia. Our findings revealed that SLSP mitigated behavioral impairments and excessive microglial activation in models of PD, including MPTP-treated mice. Additionally, SLSP inhibited the upregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) and attenuated the phosphorylation of PI3K, protein kinase B (AKT), nuclear factor-κB (NFκB), and inhibitor of NFκB protein α (IκBα) both in vivo and in vitro. Moreover, SLSP suppressed the production of inflammatory markers such as interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α) in LPS-stimulated BV-2 cells. Notably, the P2Y2R agonist partially reversed the inhibitory effects of SLSP in LPS-treated BV-2 cells. These results suggest that SLSP inhibit microglia-mediated neuroinflammation in experimental PD models, likely through the P2Y2R/PI3K/AKT/NFκB signaling pathway. These novel findings indicate that SLSP may offer therapeutic potential for PD by attenuating microglia-mediated neuroinflammation.
Animals
;
Panax notoginseng/chemistry*
;
Saponins/pharmacology*
;
Microglia/immunology*
;
Mice
;
NF-kappa B/immunology*
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/immunology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Male
;
Parkinson Disease/immunology*
;
Mice, Inbred C57BL
;
Disease Models, Animal
;
Plant Leaves/chemistry*
;
Neuroinflammatory Diseases/drug therapy*
;
Humans
4.Shionone protects cerebral ischemic injury through alleviating microglia-mediated neuroinflammation.
Lushan XU ; Chenggang LI ; ChenChen ZHAO ; Zibu WANG ; Zhi ZHANG ; Xin SHU ; Xiang CAO ; Shengnan XIA ; Xinyu BAO ; Pengfei SHAO ; Yun XU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(4):471-479
Microglia, the resident immune cells in the central nervous system (CNS), rapidly transition from a resting to an active state in the acute phase of ischemic brain injury. This active state mediates a pro-inflammatory response that can exacerbate the injury. Targeting the pro-inflammatory response of microglia in the semi-dark band during this acute phase may effectively reduce brain injury. Shionone (SH), an active ingredient extracted from the dried roots and rhizomes of the genus Aster (Asteraceae), has been reported to regulate the inflammatory response of macrophages in sepsis-induced acute lung injury. However, its function in post-stroke neuroinflammation, particularly microglia-mediated neuroinflammation, remains uninvestigated. This study found that SH significantly inhibited lipopolysaccharide (LPS)-induced elevation of inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS), in microglia in vitro. Furthermore, the results demonstrated that SH alleviated infarct volume and improved behavioral performance in middle cerebral artery occlusion (MCAO) mice, which may be attributed to the inhibition of the microglial inflammatory response induced by SH treatment. Mechanistically, SH potently inhibited the phosphorylation of serine-threonine protein kinase B (AKT), mammalian target of rapamycin (mTOR), and signal transducer and activator of transcription 3 (STAT3). These findings suggest that SH may be a potential therapeutic agent for relieving ischemic stroke (IS) by alleviating microglia-associated neuroinflammation.
Animals
;
Microglia/immunology*
;
Mice
;
Male
;
Mice, Inbred C57BL
;
Brain Ischemia/immunology*
;
Neuroinflammatory Diseases/drug therapy*
;
Neuroprotective Agents/administration & dosage*
;
Interleukin-1beta/genetics*
;
STAT3 Transcription Factor/genetics*
;
TOR Serine-Threonine Kinases/genetics*
;
Tumor Necrosis Factor-alpha/genetics*
;
Proto-Oncogene Proteins c-akt/immunology*
;
Nitric Oxide Synthase Type II/genetics*
;
Lipopolysaccharides
5.Lirispirolides A-L, a new class of sesquiterpene-monoterpene heterodimers with anti-neuroinflammatory activity from the rare medicinal plant Liriodendron chinense.
Yuhang HE ; Kexin LI ; Yufei WU ; Zexin JIN ; Jinfeng HU ; Yicheng MAO ; Juan XIONG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):938-950
Lirispirolides A-L (1-12), twelve novel sesquiterpene-monoterpene heterodimers featuring distinctive carbon skeletons, were isolated from the branches and leaves of Chinese tulip tree [Liriodendron chinense (L. chinense)], a rare medicinal and ornamental plant endemic to China. The structural elucidation was accomplished through comprehensive spectroscopic analyses, quantum-chemical calculations, and X-ray crystallography. These heterodimers exhibit a characteristic 2-oxaspiro[4.5]decan-1-one structural motif, biosynthetically formed through intermolecular [4 + 2]-cycloaddition between a germacrane-type sesquiterpene and an ocimene-type monoterpene. The majority of the isolated compounds demonstrated significant anti-neuroinflammatory effects in lipopolysaccharide (LPS)-induced BV-2 microglial cells by reducing the production of pro-inflammatory mediators, specifically tumor necrosis factor-α (TNF-α) and nitric oxide (NO). Further investigation revealed that the lirispirolides' inhibition of NO release correlated with decreased messenger ribonucleic acid (mRNA) expression of inducible NO synthase (iNOS).
Sesquiterpenes/isolation & purification*
;
Anti-Inflammatory Agents/isolation & purification*
;
Animals
;
Mice
;
Tumor Necrosis Factor-alpha/genetics*
;
Nitric Oxide/immunology*
;
Microglia/immunology*
;
Molecular Structure
;
Liriodendron/chemistry*
;
Monoterpenes/isolation & purification*
;
Plants, Medicinal/chemistry*
;
Cell Line
;
Lipopolysaccharides
;
Nitric Oxide Synthase Type II/immunology*
;
Plant Extracts/pharmacology*
;
China
6.Protosappanin A exerts anti-neuroinflammatory effect by inhibiting JAK2-STAT3 pathway in lipopolysaccharide-induced BV2 microglia.
Li-Chao WANG ; Li-Xi LIAO ; Ming-Bo ZHAO ; Xin DONG ; Ke-Wu ZENG ; Peng-Fei TU
Chinese Journal of Natural Medicines (English Ed.) 2017;15(9):674-679
Microglial activation and resultant neuroinflammatory response are implicated in various brain diseases including Alzheimer's disease and Parkinson's disease. Treatment with anti-neuroinflammatory agents could provide therapeutic benefits for such disorders. Protosappanin A (PTA) is a major bioactive ingredient isolated from Caesalpinia sappan L.. In this work, the anti-neuroinflammatory effects of PTA on LPS-stimulated BV2 cells were investigated and the underlying mechanisms were explored. Results showed that PTA significantly inhibited the production of TNF-α and IL-1β in LPS-activated BV2 microglia. Moreover, the mRNA expressions of IL-6, IL-1β, and MCP-1 were reduced by PTA in a dose-dependent manner. Furthermore, PTA suppressed JAK2/STAT3-dependent inflammation pathway through down-regulating the phosphorylation of JAK2 and STAT3, as well as STAT3 nuclear translocation against LPS treatment. These observations suggested a novel role for PTA in regulating LPS-induced neuroinflammatory injuries.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
Humans
;
Inflammation
;
drug therapy
;
genetics
;
immunology
;
Interleukin-1beta
;
genetics
;
immunology
;
Lipopolysaccharides
;
pharmacology
;
Mice
;
Microglia
;
drug effects
;
immunology
;
Nitric Oxide
;
genetics
;
immunology
;
Phenols
;
pharmacology
;
STAT3 Transcription Factor
;
genetics
;
immunology
;
Signal Transduction
;
drug effects
;
Tumor Necrosis Factor-alpha
;
genetics
;
immunology
7.Could Intrathymic Injection of Myelin Basic Protein Suppress Inflammatory Response After Co-culture of T Lymphocytes and BV-2 Microglia Cells?
Zhan-Qun CUI ; Bao-Long LIU ; Qiao-Li WU ; Ying CAI ; Wei-Jia FAN ; Ming-Chao ZHANG ; Wei-Liang DING ; Bo ZHANG ; Jian-Min KANG ; Hua YAN
Chinese Medical Journal 2016;129(7):831-837
BACKGROUNDThe interaction between activated microglia and T lymphocytes can yield abundant pro-inflammatory cytokines. Our previous study proved that thymus immune tolerance could alleviate the inflammatory response. This study aimed to investigate whether intrathymic injection of myelin basic protein (MBP) in mice could suppress the inflammatory response after co-culture of T lymphocytes and BV-2 microglia cells.
METHODSTotally, 72 male C57BL/6 mice were randomly assigned to three groups (n = 24 in each): Group A: intrathymic injection of 100 μl MBP (1 mg/ml); Group B: intrathymic injection of 100 μl phosphate-buffered saline (PBS); and Group C: sham operation group. Every eight mice in each group were sacrificed to obtain the spleen at postoperative days 3, 7, and 14, respectively. T lymphocytes those were extracted and purified from the spleens were then co-cultured with activated BV-2 microglia cells at a proportion of 1:2 in the medium containing MBP for 3 days. After identified the T lymphocytes by CD3, surface antigens of T lymphocytes (CD4, CD8, CD152, and CD154) and BV-2 microglia cells (CD45 and CD54) were detected by flow cytometry. The expressions of pro-inflammatory factors of BV-2 microglia cells (interleukin [IL]-1β, tumor necrosis factor-α [TNF-α], and inducible nitric oxide synthase [iNOS]) were detected by quantitative real-time polymerase chain reaction (PCR). One-way analysis of variance (ANOVA) and the least significant difference test were used for data analysis.
RESULTSThe levels of CD152 in Group A showed an upward trend from the 3rd to 7th day, with a downward trend from the 7th to 14th day (20.12 ± 0.71%, 30.71 ± 1.14%, 13.50 ± 0.71% at postoperative days 3, 7, and 14, respectively, P < 0.05). The levels of CD154 in Group A showed a downward trend from the 3rd to 7th day, with an upward trend from the 7th to 14th day (10.00 ± 0.23%, 5.28 ± 0.69%, 14.67 ± 2.71% at postoperative days 3, 7, and 14, respectively, P < 0.05). The ratio of CD4+/CD8 + T in Group A showed a downward trend from the 3rd to 7th day, with the minimum at postoperative day 7, then an upward trend from the 7th to 14th day (P < 0.05). Meanwhile, the levels of CD45 and CD54 in Group A were found as the same trend as the ratio of CD4+/CD8 + T (CD45: 83.39 ± 2.56%, 82.74 ± 2.09%, 87.56 ± 2.11%; CD54: 3.80 ± 0.24%, 0.94 ± 0.40%, 3.41 ± 0.33% at postoperative days 3, 7, and 14, respectively, P < 0.05). The expressions of TNF-α, IL-1β, and iNOS in Group A were significantly lower than those in Groups B and C, and the values at postoperative day 7 were the lowest compared with those at postoperative days 3 and 14 (P < 0.05). No significant difference was found between Groups B and C.
CONCLUSIONSIntrathymic injection of MBP could suppress the immune reaction that might reduce the secondary immune injury of brain tissue induced by an inflammatory response.
Animals ; Anti-Inflammatory Agents ; pharmacology ; Antigens, Surface ; analysis ; Brain Injuries, Traumatic ; drug therapy ; CD4-CD8 Ratio ; Coculture Techniques ; Male ; Mice ; Mice, Inbred C57BL ; Microglia ; immunology ; Myelin Basic Protein ; administration & dosage ; pharmacology ; T-Lymphocytes ; immunology
8.Advances of immunological pathogenesis research in HIV related neurocognitive disorder.
Journal of Zhejiang University. Medical sciences 2016;45(3):249-255
With extended life of HIV-infected patients due to highly active anti-retroviral therapy (HAART), the rate of HIV associated neurocognitive disorder (HAND) remains high and attracts much attention. The evidence is clear that cytokines are elevated in the blood of patients with HIV infection, which contribute to elevating the permeability of blood-brain barrier. Benefiting from that, cells in the brain are infected with HIV that has accelerated through the blood-brain barrier both as cell-free virus and infected immune cells including monocytes and T cells. Upon migration into the central nervous system, HIV-infected monocytes and T cells not only infect brain resident cells but also produce proinflammatory cytokines such as TNF and IL-1ß, which further activate microglia and astrocytes. These activated brain glial cells and perivascular macrophages, which release inflammatory mediators, are the main contributors to neuroinflammation resulting in neuronal dysfunction. The pathogenesis of HAND is multifaceted, however, mounting evidence indicates that HIV related neuroinflammation plays a major role, which should be the focus of therapeutic research for HAND in future.
Astrocytes
;
Blood-Brain Barrier
;
Brain
;
Cell Movement
;
Central Nervous System
;
Cytokines
;
HIV Infections
;
immunology
;
HIV-1
;
Humans
;
Macrophages
;
Microglia
;
Monocytes
;
Neurocognitive Disorders
;
immunology
;
Neurons
;
T-Lymphocytes
9.Anti-neuro-inflammatory effects of Nardostachys chinensis in lipopolysaccharide-and lipoteichoic acid-stimulated microglial cells.
Sun Young PARK ; Young Hun KIM ; Geuntae PARK
Chinese Journal of Natural Medicines (English Ed.) 2016;14(5):343-353
Excessive microglial cell activation is related to the progression of chronic neuro-inflammatory disorders. Heme oxygenase-1 (HO-1) expression mediated by the NFE2-related factor (Nrf-2) pathway is a key regulator of neuro-inflammation. Nardostachys chinensis is used as an anti-malarial, anti-nociceptive, and neurotrophic treatment in traditional Asian medicines. In the present study, we examined the effects of an ethyl acetate extract of N. chinensis (EN) on the anti-neuro-inflammatory effects mediated by HO-1 up-regulation in Salmonella lipopolysaccharide (LPS)- or Staphylococcus aureus lipoteichoic acid (LTA)-stimulated BV2 microglial cells. Our results indicated that EN suppressed pro-inflammatory cytokine production and induced HO-1 transcription and translation through Nrf-2/antioxidant response element (ARE) signaling. EN markedly inhibited LPS- and LTA-induced activation of nuclear factor-kappa B (NF-κB) as well as phosphorylation of mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription (STAT). Furthermore, EN protected hippocampal HT22 cells from indirect neuronal toxicity mediated by LPS- and LTA-treated microglial cells. These results suggested that EN impairs LPS- and LTA-induced neuro-inflammatory responses in microglial cells and confers protection against indirect neuronal damage to HT22 cells. In conclusion, our findings indicate that EN could be used as a natural anti-neuro-inflammatory and neuroprotective agent.
Anti-Inflammatory Agents
;
pharmacology
;
Cell Line
;
Heme Oxygenase-1
;
genetics
;
immunology
;
Humans
;
Lipopolysaccharides
;
adverse effects
;
Microglia
;
cytology
;
drug effects
;
immunology
;
Mitogen-Activated Protein Kinases
;
genetics
;
immunology
;
NF-kappa B
;
genetics
;
immunology
;
Nardostachys
;
chemistry
;
Neuroprotective Agents
;
pharmacology
;
Plant Extracts
;
pharmacology
;
Teichoic Acids
;
adverse effects
10.Physiological properties and functions of microglia.
Ying LI ; Xu-Fei DU ; Jiu-Lin DU
Acta Physiologica Sinica 2013;65(5):471-482
Microglia, the resident immune effective cells of the central nervous system, play crucial roles in mediating immune-related process. It becomes activated quickly in response to even minor pathological insults and participates in series of immune responses. Under physiological conditions, most microglia stay in a typical resting state, with ramified processes continuously extending and retracting from surrounding neural tissues, suggesting an important function of resting microglia. Recent studies indicate that resting microglia can regulate many physiological processes, including neural development, neural circuit formation, neuronal activity and plasticity, and animal grooming behavior. Here, we review the properties of resting microglia and further discuss how microglia participate in the above-mentioned functional regulation under physiological conditions.
Animals
;
Central Nervous System
;
cytology
;
Humans
;
Microglia
;
immunology
;
physiology

Result Analysis
Print
Save
E-mail