1.Detection of IgG protein in human urine based on vertical flow paper microfluidic chip.
Xinru LI ; Xinyi WANG ; Ziyu WEI ; Penghui ZHANG ; Jingwen XU ; Lang XU ; Feifan ZHENG ; Zhenwei YANG ; Yuanyuan CHEN ; Xianbo QIU ; Lulu ZHANG
Chinese Journal of Biotechnology 2023;39(1):337-346
The kidney is the body's most important organ and the protein components in urine could be detected for diagnosing certain diseases. The amount of IgG protein in urine could be used to determine the degree of kidney function damage. IgG protein in human urine was detected by vertical flow paper-based microfluidic chip, double-antibody sandwich immunoreaction, and cell phone image processing. The results showed that using an IgG antibody concentration of 500 μg/mL and a gold standard antibody concentration of 100 μg/mL, the image signal showed a good linear relationship in the range of IgG concentration of 0.2-3.2 μg/mL, with R2=0.973 3 achieved. A complete set of detection devices were designed and the detection method showed good non-specificity.
Humans
;
Microfluidics
;
Immunoglobulin G
;
Kidney
;
Microfluidic Analytical Techniques
2.Visualization analysis of microfluidics research status.
Wei WEI ; Ruijun WU ; Xiaodong SANG ; Tianyu LIANG ; Zhifei LI ; Zhi LI ; Yang YANG ; Yue SU
Journal of Biomedical Engineering 2022;39(3):551-560
Microfluidics is the science and technology to manipulate small amounts of fluids in micro/nano-scale space. Multiple modules could be integrated into microfluidic device, and due to its advantages of microminiaturization and controllability, microfluidics has drawn extensive attention since its birth. In this paper, the literature data related to microfluidics research from January 1, 2006 to December 31, 2021 were obtained from Web of Science Core Collection database. CiteSpace 5.8.R3 software was used for bibliometrics analysis, so as to explore the research progress and development trends of microfluidics research at home and abroad. Based on the analysis of 50 129 articles, it could be seen that microfluidics was a hot topic of global concern, and the United States had a certain degree of authority in this field. Massachusetts Institute of Technology and Harvard University not only had a high number of publications, but also had strong influence and extensive cooperation network. Combined with ultrasonic, surface modification and sensor technology, researchers constructed paper-based microfluidic, droplet microfluidic and digital microfluidic platforms, which were applied in the field of immediate diagnosis, nucleic acid and circulating tumor cell analysis of in vitro diagnosis and organ-on-a-chip. China was one of the countries with a high level of research in the field of microfluidics, while the industrialization of high-end products needed to be improved. As people's demand for disease risk prediction and health management increased, promoting microfluidic technological innovation and achievement transformation is of great significance to safeguard people's life and health.
China
;
Humans
;
Microfluidic Analytical Techniques
;
Microfluidics
;
Oligonucleotide Array Sequence Analysis
3.Design, simulation and application of multichannel microfluidic chip for cell migration.
Huilai LI ; Xiao YANG ; Xiaosong WU ; Zhigang LI ; Chenggang HONG ; Yong LIU ; Ling ZHU ; Ke YANG
Journal of Biomedical Engineering 2022;39(1):128-138
Cell migration is defined as the directional movement of cells toward a specific chemical concentration gradient, which plays a crucial role in embryo development, wound healing and tumor metastasis. However, current research methods showed low flux and are only suitable for single-factor assessment, and it was difficult to comprehensively consider the effects of other parameters such as different concentration gradients on cell migration behavior. In this paper, a four-channel microfluidic chip was designed. Its characteristics were as follows: it relied on laminar flow and diffusion mechanisms to establish and maintain a concentration gradient; it was suitable for observation of cell migration in different concentration gradient environment under a single microscope field; four cell isolation zones (20 μm width) were integrated into the microfluidic device to calibrate the initial cell position, which ensured the accuracy of the experimental results. In particular, we used COMSOL Multiphysics software to simulate the structure of the chip, which demonstrated the necessity of designing S-shaped microchannel and horizontal pressure balance channel to maintain concentration gradient. Finally, neutrophils were incubated with advanced glycation end products (AGEs, 0, 0.2, 0.5, 1.0 μmol·L -1), which were closely related to diabetes mellitus and its complications. The migration behavior of incubated neutrophils was studied in the 100 nmol·L -1 of chemokine (N-formylmethionyl-leucyl-phenyl-alanine) concentration gradient. The results prove the reliability and practicability of the microfluidic chip.
Cell Movement
;
Chemotaxis
;
Equipment Design
;
Lab-On-A-Chip Devices
;
Microfluidic Analytical Techniques
;
Microfluidics
;
Neutrophils
;
Reproducibility of Results
4.Advances of using microfluidic chips for research and diagnosis of pulmonary inflammatory diseases.
Taoran XIA ; Wei ZOU ; Jing LIU
Chinese Journal of Biotechnology 2021;37(11):3905-3914
Microfluidic chip technology integrates the sample preparation, reaction, separation and detection on a chip. It consists a network of microchannels, which controls the whole system through fluid. With the advantages of portability, high throughput, and the ability to simulate the microenvironment in vivo, it has a broad application prospect in the research of disease diagnosis, pathogenesis and drug screening. Pulmonary inflammatory disease is a common disease usually caused by bacterial, viral and fungal infections. Early pneumonia is often difficult to diagnose due to lack of obvious respiratory symptoms or the symptoms are mostly atypical, but the disease progresses rapidly. Recently, microfluidic chip technology has been increasingly used to the study of pulmonary inflammatory diseases. In particular, it has been used to develop a "lung-on-a-chip" model, which can reproduce the key structure, function and mechanical properties of human alveolar capillary interface (i.e., the basic functional unit of a living lung), and well simulate the alveoli in vitro. Compared with the cell and animal models, this multifunctional micro experimental platform has great advantages. This article summarizes the advances of using microfluidic chips for the research and diagnosis of pulmonary inflammatory diseases, with the aim to provide new ideas for researchers in this area.
Animals
;
Drug Evaluation, Preclinical
;
Humans
;
Lung
;
Microfluidic Analytical Techniques
;
Microfluidics
5.Application of paper-based microfluidics in point-of-care testing.
Jiasu XU ; Ya ZHANG ; Xiaosong SU ; Shiyin ZHANG ; Shengxiang GE
Chinese Journal of Biotechnology 2020;36(7):1283-1292
Point-of-care testing (POCT) is a test method performed on the sampling site or patient bedside. Accurate results can be achieved rapidly by the application of portable analytical instruments and compatible reagents. It has been widely used in the field of in vitro diagnosis (IVD). Paper-based microfluidics technology has great potential in developing POCT due to its advantages in low cost, simple operation, rapid detection, portable equipment, and unrestricted application conditions. In recent years, the development of paper-based microfluidic technology and its integration with various new technologies and methods have promoted the substantial development of POCT technology and methods. The classification and characteristic of the paper are summarized in this review. Paper-based microfluidic sample pretreatment methods, the flow control in the process of reaction and the signal detecting and analyzing methods for the testing results are introduced. The research progress of various kinds of microfluidic paper-based analytical devices (μPADs) toward POCT in recent years is reviewed. Finally, remaining problems and the future prospects in POCT application of paper-based microfluidics are discussed.
Diagnostic Tests, Routine
;
methods
;
Humans
;
Microfluidic Analytical Techniques
;
instrumentation
;
Paper
;
Point-of-Care Testing
6.Application and prospect of microfluidic chip in central nervous system diseases.
Chinese Journal of Biotechnology 2019;35(3):396-403
In recent years, many human central nervous systems (CNS) of microfluidic platforms and related disease models in vitro have been built with the continuous development of the microfluidic technology and biological microelectronics mechanical systems technology. Microplatforms have emerged to provide a better approximation of the in vivo scenario with better control of the structure, microenvironment and stimuli. This review summarized the basic technology of microfluidic chips in CNS and the application in CNS diseases. In addition, the research of microfluidic chip in CNS diseases has been also prospected. We also highlight challenges that can be addressed with interdisciplinary efforts to achieve more biomimicry.
Central Nervous System Diseases
;
Humans
;
Microfluidic Analytical Techniques
;
Microfluidics
8.Micro-droplet characterization and its application for amino acid detection in droplet microfluidic system.
Huiling YUAN ; Libing DONG ; Ran TU ; Wenbin DU ; Shiru JI ; Qinhong WANG
Chinese Journal of Biotechnology 2014;30(1):139-146
Recently, the droplet microfluidic system attracts interests due to its high throughput and low cost to detect and screen. The picoliter micro-droplets from droplet microfluidics are uniform with respect to the size and shape, and could be used as monodispensed micro-reactors for encapsulation and detection of single cell or its metabolites. Therefore, it is indispensable to characterize micro-droplet and its application from droplet microfluidic system. We first constructed the custom-designed droplet microfluidic system for generating micro-droplets, and then used the micro-droplets to encapsulate important amino acids such as glutamic acid, phenylalanine, tryptophan or tyrosine to test the droplets' properties, including the stability, diffusivity and bio-compatibility for investigating its application for amino acid detection and sorting. The custom-designed droplet microfluidic system could generate the uniformed micro-droplets with a controllable size between 20 to 50 microm. The micro-droplets could be stable for more than 20 h without cross-contamination or fusion each other. The throughput of detection and sorting of the system is about 600 micro-droplets per minute. This study provides a high-throughput platform for the analysis and screening of amino acid-producing microorganisms.
Amino Acids
;
isolation & purification
;
Microfluidic Analytical Techniques
;
Microfluidics
;
instrumentation
9.Applications of microchip electrophoresis and capillary electrophoresis for screening FLT3-ITD gene mutation in acute myeloid leukemia.
Xin LENG ; Ling-Di LI ; Jin-Lan LI ; Xiao-Jun HUANG ; Guo-Rui RUAN
Journal of Experimental Hematology 2014;22(1):44-49
The purpose of the present study was to compare the reliability of microchip electrophoresis and capillary electrophoresis for screening FLT3-ITD gene mutation in acute myeloid leukemia. The FLT3-ITD mutation in the genomic DNA samples from 214 untreated AML patients were separately detected by PCR-microchip electrophoresis and PCR-capillary electrophoresis, then the DNA direct sequencing analysis was carried out. The results from PCR-microchip electrophoresis showed that there were 151 FLT3-ITD mutation negative, 58 FLT3-ITD mutation positive (58/214, 27.1%) and 5 FLT3-ITD mutation doubtful positive (5/214, 2.3%), while the outcomes from PCR-capillary electrophoresis displayed that there were 147 FLT3-ITD mutation negative and 67 FLT3-ITD mutation positive (67/214, 31.3%) without doubtful positive. In the 67 FLT3-ITD mutation positive samples detected by using PCR-capillary electrophoresis, 4 samples were detected as the negative while 5 samples were measured as the doubtful positive by using PCR-microchip electrophoresis. The followed sequencing analysis demonstrated that the above 9 samples were all FLT3-ITD mutation positive, indicating that PCR-capillary electrophoresis was more accurate and sensitive in screening the FLT3-ITD mutation, although statistic analysis showed that there were no significant differences in the detected results between PCR-microchip electrophoresis and PCR-capillary electrophoresis groups (Pearson Chi-squared Test, P > 0.05). It is concluded that both PCR-microchip electrophoresis and PCR-capillary electrophoresis were convenient and fast for screening FLT3-ITD mutation, but the accuracy of PCR-microchip electrophoresis awaits further improvement.
Adolescent
;
Adult
;
Aged
;
Aged, 80 and over
;
Electrophoresis, Capillary
;
Electrophoresis, Microchip
;
Female
;
Humans
;
Leukemia, Myeloid, Acute
;
diagnosis
;
genetics
;
Male
;
Middle Aged
;
Mutation
;
Young Adult
;
fms-Like Tyrosine Kinase 3
;
genetics
10.Expression and clinical significance of secretory leucocyte protease inhibitor in colon carcinoma.
Jiubing GUO ; Guoxin LI ; Jianmin ZHUANG ; Chenghong JI ; Feng LIU ; Guoquan TAO ; Hanzhang DONG
Journal of Southern Medical University 2013;33(6):898-901
OBJECTIVETo investigate the expression of secretory leucocyte protease inhibitor (SLPI) in colon cancer and their clinical significance.
METHODSImmunohistochemistry was performed to detect the SLPI expression in colon cancer tissue microarray. The expression of SLPI was scored by two pathologists and was analyzed using Χ(2) test to explore its influence on the pathologic characteristics of colon carcinoma.
RESULTSSLPI was up-regulated in colon cancer tissue compared to normal mucosa. Overexpression of SLPI protein was correlated with differentiation grade (low differentiation: 42.1% vs 57.9%; moderate/well differentiation: 2.3% vs 97.7%, TNM stages(III-IV:29.4% vs 70.6%;I-II:3.1% vs 96.9%), lymph node metastasis (28.6% vs 71.4%) and distant metastasis (84.6% vs 15.4%), but not with patient age or sex.
CONCLUSIONSLPI overexpression correlates with aggressive pathologic characteristics of colon cancer and it may server as prognostic factor of colon cancer patients. Further research will be carried out to verify whether SLPI can become a new target for colon cancer treatment.
Adult ; Aged ; Aged, 80 and over ; Colonic Neoplasms ; metabolism ; pathology ; Electrophoresis, Microchip ; Female ; Humans ; Immunohistochemistry ; Male ; Middle Aged ; Neoplasm Staging ; Secretory Leukocyte Peptidase Inhibitor ; metabolism

Result Analysis
Print
Save
E-mail