1.Villin-like protein VILL suppresses proliferation of nasopharyngeal carcinoma cells by interacting with LMO7 protein.
Yumei ZENG ; Jike LI ; Zhongxi HUANG ; Yibo ZHOU
Journal of Southern Medical University 2025;45(5):954-961
OBJECTIVES:
To elucidate the molecular mechanism by which villin-like protein VILL (VILL) inhibits proliferation of nasopharyngeal carcinoma (NPC) cells.
METHODS:
Co-immunoprecipitation (CO-IP) assay, mass spectrometry, Western blotting, immunofluorescence staining, and GST pull-down assay were employed to identify and confirm the protein interacting with VILL that had the highest abundance in NPC cell lines. Transgenic experiments were conducted in both NPC cell lines and nude mice to validate the regulatory role of VILL and its target protein in NPC proliferation. Immunohistochemistry was utilized to assess the correlation of the expression levels of VILL and its target protein in clinical tissue specimens of NPC with the clinical features of the patients.
RESULTS:
In NPC cell lines (HONE1 EBV and S18), VILL was found to interact most abundantly with the E3 ubiquitin ligase LMO7, and both proteins co-localized in the cytoplasm with direct interactions. Overexpression of LMO7 partially counteracted the inhibitory effect of VILL on NPC cell proliferation. The expression of VILL was significantly downregulated in 136 NPC tissue samples compared to 67 non-cancerous nasopharyngeal tissues (P<0.00001) with close correlation with clinical T stage (P=0.04), N stage (P=0.01), and M stage (P=0.013), whereas LMO7 was highly expressed in all the NPC tissues.
CONCLUSIONS
VILL overexpression inhibits NPC proliferation probably by suppressing the oncogenic function of LMO7.
Nasopharyngeal Neoplasms/metabolism*
;
Humans
;
LIM Domain Proteins/metabolism*
;
Cell Proliferation
;
Cell Line, Tumor
;
Animals
;
Mice
;
Nasopharyngeal Carcinoma
;
Mice, Nude
;
Transcription Factors/metabolism*
;
Carcinoma
;
Female
;
Microfilament Proteins/genetics*
;
Male
;
Middle Aged
2.The Medial Prefrontal Cortex-Basolateral Amygdala Circuit Mediates Anxiety in Shank3 InsG3680 Knock-in Mice.
Jiabin FENG ; Xiaojun WANG ; Meidie PAN ; Chen-Xi LI ; Zhe ZHANG ; Meng SUN ; Tailin LIAO ; Ziyi WANG ; Jianhong LUO ; Lei SHI ; Yu-Jing CHEN ; Hai-Feng LI ; Junyu XU
Neuroscience Bulletin 2025;41(1):77-92
Anxiety disorder is a major symptom of autism spectrum disorder (ASD) with a comorbidity rate of ~40%. However, the neural mechanisms of the emergence of anxiety in ASD remain unclear. In our study, we found that hyperactivity of basolateral amygdala (BLA) pyramidal neurons (PNs) in Shank3 InsG3680 knock-in (InsG3680+/+) mice is involved in the development of anxiety. Electrophysiological results also showed increased excitatory input and decreased inhibitory input in BLA PNs. Chemogenetic inhibition of the excitability of PNs in the BLA rescued the anxiety phenotype of InsG3680+/+ mice. Further study found that the diminished control of the BLA by medial prefrontal cortex (mPFC) and optogenetic activation of the mPFC-BLA pathway also had a rescue effect, which increased the feedforward inhibition of the BLA. Taken together, our results suggest that hyperactivity of the BLA and alteration of the mPFC-BLA circuitry are involved in anxiety in InsG3680+/+ mice.
Animals
;
Prefrontal Cortex/metabolism*
;
Basolateral Nuclear Complex/metabolism*
;
Mice
;
Anxiety/metabolism*
;
Nerve Tissue Proteins/genetics*
;
Male
;
Gene Knock-In Techniques
;
Pyramidal Cells/physiology*
;
Mice, Transgenic
;
Neural Pathways/physiopathology*
;
Mice, Inbred C57BL
;
Microfilament Proteins
3.Deciphering the Role of Shank3 in Dendritic Morphology and Synaptic Function Across Postnatal Developmental Stages in the Shank3B KO Mouse.
Jing YANG ; Guaiguai MA ; Xiaohui DU ; Jinyi XIE ; Mengmeng WANG ; Wenting WANG ; Baolin GUO ; Shengxi WU
Neuroscience Bulletin 2025;41(4):583-599
Autism Spectrum Disorder (ASD) is marked by early-onset neurodevelopmental anomalies, yet the temporal dynamics of genetic contributions to these processes remain insufficiently understood. This study aimed to elucidate the role of the Shank3 gene, known to be associated with monogenic causes of autism, in early developmental processes to inform the timing and mechanisms for potential interventions for ASD. Utilizing the Shank3B knockout (KO) mouse model, we examined Shank3 expression and its impact on neuronal maturation through Golgi staining for dendritic morphology and electrophysiological recordings to measure synaptic function in the anterior cingulate cortex (ACC) across different postnatal stages. Our longitudinal analysis revealed that, while Shank3B KO mice displayed normal neuronal morphology at one week postnatal, significant impairments in dendritic growth and synaptic activity emerged by two to three weeks. These findings highlight the critical developmental window during which Shank3 is essential for neuronal and synaptic maturation in the ACC.
Animals
;
Nerve Tissue Proteins/metabolism*
;
Mice, Knockout
;
Dendrites/metabolism*
;
Mice
;
Synapses/metabolism*
;
Gyrus Cinguli/metabolism*
;
Male
;
Mice, Inbred C57BL
;
Autism Spectrum Disorder/genetics*
;
Microfilament Proteins
4.Role of the nuclear factor-kappa B signaling pathway in the repair of white matter injury in neonatal rats through human umbilical cord mesenchymal stem cell transplantation.
Shu-Juan ZHANG ; Chao WANG ; Qian-Qian XU ; Jun ZHANG ; Yan-Ping ZHU
Chinese Journal of Contemporary Pediatrics 2024;26(12):1352-1361
OBJECTIVES:
To observe the reparative effects of human umbilical cord mesenchymal stem cell (hUC-MSC) transplantation on white matter injury (WMI) in neonatal rats and explore its mechanism through the nuclear factor-kappa B (NF-κB) signaling pathway mediated by microglial cells.
METHODS:
Sprague-Dawley rats, aged 2 days, were randomly divided into three groups: sham-operation,WMI, and hUC-MSC (n=18 each). Fourteen days after modeling, hematoxylin-eosin staining was used to observe pathological changes in the white matter, and immunofluorescence staining was used to measure the expression level of ionized calcium-binding adapter molecule 1 (Iba1). Western blotting was used to measure the protein expression levels of inhibitory subunit of nuclear factor-kappa B alpha (IκBα), phosphorylated IκBα (p-IκBα), phosphorylated NF-κB p65 (p-NF-κB p65), myelin basic protein (MBP), and neuron-specific nuclear protein (NeuN). Quantitative real-time PCR was used to assess the mRNA expression levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), MBP, and NeuN. Immunohistochemistry was used to measure the protein expression levels of MBP and NeuN. On day 28, the Morris water maze test was used to evaluate spatial cognitive ability.
RESULTS:
Fourteen days after modeling, the sham-operation group exhibited intact white matter structure with normal cell morphology and orderly nerve fiber arrangement. In the WMI group, large-scale cell degeneration and necrosis were observed, and nerve fiber arrangement was disordered. The hUC-MSC group showed relatively normal cell morphology and more orderly nerve fibers. Compared with the sham-operation group, the WMI group had significantly higher proportions of Iba1-positive cells, increased protein levels of p-IκBα and p-NF-κB p65, and higher mRNA levels of TNF-α and IL-1β. The protein expression of IκBα and the positive expression of MBP and NeuN, as well as their protein and mRNA levels, were significantly reduced in the WMI group (P<0.05). Compared with the WMI group, the hUC-MSC group showed reduced proportions of Iba1-positive cells, decreased protein levels of p-IκBα and p-NF-κB p65, and lower mRNA levels of TNF-α and IL-1β. Furthermore, IκBα protein expression and MBP and NeuN expression (both at the protein and mRNA levels) were significantly increased in the hUC-MSC group (P<0.05). On day 28, the Morris water maze results showed that compared with the sham-operation group, the WMI group had significantly longer escape latency and fewer platform crossings (P<0.05). In contrast, the hUC-MSC group had significantly shorter escape latency and more platform crossings than the WMI group (P<0.05).
CONCLUSIONS
hUC-MSC transplantation can repair WMI in neonatal rats, promote the maturation of oligodendrocytes, and support neuronal survival, likely by inhibiting activation of the NF-κB signaling pathway mediated by microglial cells.
Animals
;
Rats, Sprague-Dawley
;
White Matter/metabolism*
;
Rats
;
Signal Transduction
;
Mesenchymal Stem Cell Transplantation
;
Humans
;
NF-kappa B/metabolism*
;
Animals, Newborn
;
Umbilical Cord/cytology*
;
Male
;
NF-KappaB Inhibitor alpha/metabolism*
;
I-kappa B Proteins/genetics*
;
Microfilament Proteins/analysis*
;
Calcium-Binding Proteins/metabolism*
;
Female
5.Knockdown Inhibits the Proliferation, Invasiveness, and Metastasis of Hepatocellular Carcinoma Cells and Sensitizes them to TRAIL-Induced Apoptosis.
Guang-Ming LI ; Chao-Jie LIANG ; Dong-Xin ZHANG ; Li-Jun ZHANG ; Ji-Xiang WU ; Ying-Chen XU
Chinese Medical Journal 2018;131(19):2320-2331
BackgroundXB130 is a recently discovered adaptor protein that is highly expressed in many malignant tumors, but few studies have investigated its role in hepatocellular carcinoma (HCC). Therefore, this study explored the relationship between this protein and liver cancer and investigated its molecular mechanism of action.
MethodsThe expression of XB130 between HCC tissues and adjacent nontumor tissues was compared by real-time polymerase chain reaction, immunochemistry, and Western blotting. XB130 silencing was performed using small hairpin RNA. The effect of silencing XB130 was examined using Cell Counting Kit-8, colony assay, wound healing assay, and cell cycle analysis.
ResultsWe found that XB130 was highly expressed in HCC tissues (cancer tissues vs. adjacent tissues: 0.23 ± 0.02 vs. 0.17 ± 0.02, P < 0.05) and liver cancer cell lines, particularly MHCC97H and HepG2 (MHCC97H and HepG2 vs. normal liver cell line LO-2: 2.35 ± 0.26 and 2.04 ± 0.04 vs. 1.00 ± 0.04, respectively, all P < 0.05). The Cell Counting Kit-8 assay, colony formation assay, and xenograft model in nude mice showed that silencing XB130 inhibited cell proliferative ability both in vivo and in vitro, with flow cytometry demonstrating that the cells were arrested in the G0/G1 phase in HepG2 (HepG2 XB130-silenced group [shA] vs. HepG2 scramble group [NA]: 74.32 ± 5.86% vs. 60.21 ± 3.07%, P < 0.05) and that the number of G2/M phase cells was decreased (HepG2 shA vs. HepG2 NA: 8.06 ± 2.41% vs. 18.36 ± 4.42%, P < 0.05). Furthermore, the cell invasion and migration abilities were impaired, and the levels of the epithelial-mesenchymal transition-related indicators vimentin and N-cadherin were decreased, although the level of E-cadherin was increased after silencing XB130. Western blotting showed that the levels of phosphorylated phosphoinositide 3-kinase (PI3K) and phospho-protein kinase B (p-Akt) also increased, although the level of phosphorylated phosphatase and tensin homolog increased, indicating that XB130 activated the PI3K/Akt pathway. Furthermore, we found that a reduction in XB130 increased liver cancer cell sensitivity to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis.
ConclusionsOur findings suggest that XB130 might be used as a predictor of liver cancer as well as one of the targets for its treatment.
Adaptor Proteins, Signal Transducing ; genetics ; metabolism ; Animals ; Apoptosis ; Carcinoma, Hepatocellular ; metabolism ; pathology ; Cell Movement ; Cell Proliferation ; Gene Knockdown Techniques ; Liver Neoplasms ; metabolism ; pathology ; Mice ; Mice, Nude ; Microfilament Proteins ; genetics ; metabolism ; Neoplasm Invasiveness ; Phosphatidylinositol 3-Kinases ; Signal Transduction
6.Knocking down fascin inhibits cervical cancer cell proliferation and tumorigenesis in nude mice.
Xian LI ; Shanshan LI ; Xinxin WANG ; Surong ZHAO ; Hao LIU
Journal of Southern Medical University 2018;38(12):1409-1414
OBJECTIVE:
To study the effect of knocking down fascin on cervical cancer cell proliferation and tumorigenicity in nude mice.
METHODS:
Cervical cancer CaSki cells were infected with a lentiviral vector carrying fascin siRNA or with a negative control lentivirus, and fascin mRNA and protein expressions in the cells were detected using qRT-PCR and Western blotting. MTT assay was used to determine the proliferation of CaSki cells with fascin knockdown. CaSki cells transfected with fascin siRNA or the control lentiviral vector and non-transfected CaSki cells were inoculated subcutaneously in nude mice, and the volume and weight of the transplanted tumor were measured; Western blotting was used to detect the expressions of proliferating cell nuclear antigen (PCNA), survivin, cyclin dependent kinase 4 (CDK4) and p21 proteins in the tumor xenograft.
RESULTS:
Infection with the lentiviral vector carrying fascin siRNA, but not the negative control vector, caused significant reductions in the expression levels of fascin mRNA and protein in CaSki cells ( < 0.05). Fascin knockdown resulted in significantly reduced proliferation of CaSki cells ( < 0.05). The nude mice inoculated with CaSki cells with fascin knockdown showed reduced tumor volume and weight, lowered levels of PCNA, survivin and CDK4, and increased expression of p21 protein in the tumor xenograft compared with the control mice. The negative control lentivirus did not affect the proliferation or tumorigenicity of CaSki cells in nude mice or the expression levels of PCNA, survivin, CDK4 or p21 proteins in the xenografts.
CONCLUSIONS
Knocking down fascin can inhibit the growth and tumorigenicity of cervical cancer cells in nude mice.
Animals
;
Apoptosis
;
Carrier Proteins
;
genetics
;
metabolism
;
Cell Line, Tumor
;
Cell Proliferation
;
Cyclin-Dependent Kinase 4
;
metabolism
;
Cyclin-Dependent Kinase Inhibitor p21
;
metabolism
;
Female
;
Gene Knockdown Techniques
;
Genetic Vectors
;
Humans
;
Mice
;
Mice, Nude
;
Microfilament Proteins
;
genetics
;
metabolism
;
Proliferating Cell Nuclear Antigen
;
metabolism
;
RNA, Messenger
;
metabolism
;
RNA, Small Interfering
;
Survivin
;
metabolism
;
Transfection
;
Tumor Burden
;
Uterine Cervical Neoplasms
;
etiology
;
pathology
7.Small Interfering RNA Targeting α-Fodrin Suppressing the Immune Response of Sjögren's Syndrome Mice.
Xiao-Lin SUN ; Chun-Yan PANG ; Yuan LIU ; Wei ZHANG ; Yong-Fu WANG
Chinese Medical Journal 2018;131(22):2752-2754
Animals
;
Carrier Proteins
;
genetics
;
Immunohistochemistry
;
Lacrimal Apparatus
;
metabolism
;
Lung
;
metabolism
;
Mice
;
Mice, Inbred NOD
;
Microfilament Proteins
;
genetics
;
RNA, Small Interfering
;
genetics
;
physiology
;
Random Allocation
;
Sjogren's Syndrome
;
genetics
;
immunology
;
therapy
8.Cortical Inflammation is Increased in a DSS-Induced Colitis Mouse Model.
Ying HAN ; Tong ZHAO ; Xiang CHENG ; Ming ZHAO ; Sheng-Hui GONG ; Yong-Qi ZHAO ; Hai-Tao WU ; Ming FAN ; Ling-Ling ZHU
Neuroscience Bulletin 2018;34(6):1058-1066
While inflammatory bowel disease (IBD) might be a risk factor in the development of brain dysfunctions, the underlying mechanisms are largely unknown. Here, mice were treated with 5% dextran sodium sulfate (DSS) in drinking water and sacrificed on day 7. The serum level of IL-6 increased, accompanied by elevation of the IL-6 and TNF-α levels in cortical tissue. However, the endotoxin concentration in plasma and brain of mice with DSS-induced colitis showed a rising trend, but with no significant difference. We also found significant activation of microglial cells and reduction in occludin and claudin-5 expression in the brain tissue after DSS-induced colitis. These results suggested that DSS-induced colitis increases systemic inflammation which then results in cortical inflammation via up-regulation of serum cytokines. Here, we provide new information on the impact of colitis on the outcomes of cortical inflammation.
Animals
;
Calcium-Binding Proteins
;
metabolism
;
Caspase 3
;
metabolism
;
Cerebral Cortex
;
pathology
;
Claudin-5
;
metabolism
;
Colitis
;
chemically induced
;
complications
;
pathology
;
Cytokines
;
genetics
;
metabolism
;
Dextran Sulfate
;
toxicity
;
Disease Models, Animal
;
Encephalitis
;
etiology
;
Gene Expression Regulation
;
drug effects
;
Mice
;
Microfilament Proteins
;
metabolism
;
Occludin
;
metabolism
;
Polysaccharides
;
blood
;
toxicity
;
Time Factors
9.Early Activation of Astrocytes does not Affect Amyloid Plaque Load in an Animal Model of Alzheimer's Disease.
Dongpi WANG ; Xiaoqin ZHANG ; Mingkai WANG ; Dongming ZHOU ; Hongyu PAN ; Qiang SHU ; Binggui SUN
Neuroscience Bulletin 2018;34(6):912-920
Astrocytes are closely associated with Alzheimer's disease (AD). However, their precise roles in AD pathogenesis remain controversial. One of the reasons behind the different results reported by different groups might be that astrocytes were targeted at different stages of disease progression. In this study, by crossing hAPP (human amyloid precursor protein)-J20 mice with a line of GFAP-TK mice, we found that astrocytes were activated specifically at an early stage of AD before the occurrence of amyloid plaques, while microglia were not affected by this crossing. Activation of astrocytes at the age of 3-5 months did not affect the proteolytic processing of hAPP and amyloid plaque loads in the brains of hAPP-J20 mice. Our data suggest that early activation of astrocytes does not affect the deposition of amyloid β in an animal model of AD.
Aldehyde Dehydrogenase
;
metabolism
;
Alzheimer Disease
;
genetics
;
metabolism
;
pathology
;
Amyloid beta-Peptides
;
metabolism
;
Amyloid beta-Protein Precursor
;
genetics
;
metabolism
;
Animals
;
Astrocytes
;
metabolism
;
Brain
;
pathology
;
Calcium-Binding Proteins
;
metabolism
;
Cell Proliferation
;
Disease Models, Animal
;
Gene Expression Regulation
;
genetics
;
Glial Fibrillary Acidic Protein
;
Glutamine
;
metabolism
;
Green Fluorescent Proteins
;
genetics
;
metabolism
;
Humans
;
Ki-67 Antigen
;
metabolism
;
Mice
;
Mice, Transgenic
;
Microfilament Proteins
;
metabolism
;
Mutation
;
genetics
;
Nerve Tissue Proteins
;
metabolism
10.Involvement of fascin-1-mediated autophagy in the biological behavioral of endometrial cells.
Xiaomei LUO ; Wei CHENG ; Shizhang WANG ; Zhihong CHEN
Journal of Central South University(Medical Sciences) 2018;43(9):957-963
To explore the mechanism for the role of autophagy in endometriosis, and to provide a theoretical basis for prevention and treatment of endometriosis.
Methods: The endometrial CRL-7566 cells were treated with ATG5 siRNA, autophagic activator rapamycin and autophagic inhibitor 3-MA, respectively. The cell proliferation and invasion were detected by clonal formation, cell growth curve and MTT assay. The clinical specimens of endometriosis were collected from 20 cases. The expression of autophagy marker LC3II and autophagy substrate protein P62 were detected.
Results: Rapamycin inhibited the proliferation and clonal formation of CRL-7566 cells, while autophagy inhibitor 3-MA and ATG5 siRNA showed opposite effect. Moreover, rapamycin inhibited filopodia growth in endometriosis, whereas overexpression of filopodia-relevant protein fascin-1 inhibited the decrease in invasiveness caused by rapamycin. In clinical samples, we also found a significant decrease of LC3II while an increase in P62 compared with the control group.
Conclusion: Autophagy inhibition may contribute to an increase in endometrial cell proliferation and invasiveness. Autophagy activation could be a potential strategy for endometriosis therapy.
Autophagy
;
drug effects
;
genetics
;
Carrier Proteins
;
genetics
;
metabolism
;
Cell Line
;
Cell Proliferation
;
drug effects
;
Endometriosis
;
physiopathology
;
Endometrium
;
cytology
;
Female
;
Gene Expression Regulation
;
Humans
;
Microfilament Proteins
;
genetics
;
metabolism
;
Microtubule-Associated Proteins
;
genetics
;
RNA-Binding Proteins
;
genetics
;
Sirolimus
;
pharmacology

Result Analysis
Print
Save
E-mail