1.Harnessing chemical communication in plant-microbiome and intra-microbiome interactions.
Hongfu LI ; Yaxin HU ; Siqi CHEN ; Yusufjon GAFFOROV ; Mengcen WANG ; Xiaoyu LIU
Journal of Zhejiang University. Science. B 2025;26(10):923-934
Chemical communication in plant-microbiome and intra-microbiome interactions weaves a complex network, critically shaping ecosystem stability and agricultural productivity. This non-contact interaction is driven by small-molecule signals that orchestrate crosstalk dynamics and beneficial association. Plants leverage these signals to distinguish between pathogens and beneficial microbes, dynamically modulate immune responses, and secrete exudates to recruit a beneficial microbiome, while microbes in turn influence plant nutrient acquisition and stress resilience. Such bidirectional chemical dialogues underpin nutrient cycling, co-evolution, microbiome assembly, and plant resistance. However, knowledge gaps persist regarding validating the key molecules involved in plant-microbe interactions. Interpreting chemical communication requires multi-omics integration to predict key information, genome editing and click chemistry to verify the function of biomolecules, and artificial intelligence (AI) models to improve resolution and accuracy. This review helps advance the understanding of chemical communication and provides theoretical support for agriculture to cope with food insecurity and climate challenges.
Microbiota/physiology*
;
Plants/microbiology*
;
Artificial Intelligence
;
Ecosystem
2.Association between gut microbiota and hyperuricemia: insights into innovative therapeutic strategies.
Shujuan ZHANG ; Xiaoqiu LIU ; Yuxin ZHONG ; Yu FU
Chinese Journal of Biotechnology 2025;41(6):2290-2309
Uric acid (UA) is the final metabolite of purines in the human body. An imbalance in UA production and excretion that disrupts homeostasis leads to elevated blood UA levels and the development of hyperuricemia (HUA). Approximately one-third of UA is excreted through the intestinal tract. As a crucial component of the intestinal microenvironment, the gut microbiota plays a pivotal role in regulating blood UA levels. Alterations or imbalances in gut microbiota composition are linked to the onset of HUA, which implies the potential of gut microbiota as a novel target for the prevention and treatment of HUA. This review introduces the occurrence mechanism and damage of hyperuricemia, examines the association between HUA and the gut microbiota and their metabolites, and explores the molecular mechanisms underlying gut microbiota-targeted therapies for HUA. Furthermore, it discusses the potential applications of probiotics, prebiotics, and traditional Chinese medicine (including both single herbs and compound formulas) with UA-lowering effects, along with cutting-edge technologies such as fecal microbiota transplantation and machine learning in HUA treatment. This review provides valuable perspectives and strategies for improving the prevention and treatment of HUA.
Hyperuricemia/microbiology*
;
Humans
;
Gastrointestinal Microbiome/physiology*
;
Probiotics/therapeutic use*
;
Uric Acid/blood*
;
Fecal Microbiota Transplantation
;
Prebiotics
;
Medicine, Chinese Traditional
3.Methodological breakthroughs and challenges in research of soil phage microecology.
Xiaofang WANG ; Shuo WANG ; Keming YANG ; Yike TANG ; Yangchun XU ; Qirong SHEN ; Zhong WEI
Chinese Journal of Biotechnology 2025;41(6):2310-2323
Phages, as obligate bacterial and archaeal parasites, constitute a virus group of paramount ecological significance due to their exceptional abundance and genetic diversity. These biological entities serve as critical regulators in Earth's ecosystems, driving biogeochemical cycles, energy fluxes, and ecosystem services across terrestrial and marine environments. Within soil microbiomes, phages function as microbial "dark matter," maintaining the soil-plant system balance through precise modulation of the microbial community structure and functional dynamics. Despite the growing research interests in soil phages in recent years, the proportion of such studies in environmental virology remains disproportionately low, which is primarily attributed to researchers' limited familiarity with the research methodologies for phage microecology, incomplete technical frameworks, and inherent challenges posed by soil environmental complexity. To address these challenges, this review synthesizes cutting-edge methodologies for soil phage investigation from four aspects: (1) tangential flow filtration (TFF)-based phage enrichment strategies; (2) integrated quantification approaches combining double-layer agar plating, epifluorescence microscopy, and flow cytometry; (3) multi-omics analytical pipelines leveraging metagenomics and viromics datasets; and (4) computational frameworks merging machine learning algorithms with eco-evolutionary theory for deciphering phage-host interaction networks. Through comparative analysis of methodological principles, technical merits, and application scopes, we establish a comprehensive workflow for soil phage research. Future research in this field should prioritize: (1) construction of soil phage resource libraries, (2) exploration of RNA phages based on transcriptomes, (3) functional characterization of unknown genes, and (4) deep integration and interaction validation of multi-omics data. This systematic methodological synthesis provides critical technical references for addressing fundamental challenges in characterizing soil phages regarding the community structure, functional potential, and interaction mechanisms with hosts.
Bacteriophages/physiology*
;
Soil Microbiology
;
Ecosystem
;
Microbiota
;
Metagenomics/methods*
4.Gut microbiota: a new insight into neurological diseases.
Lanxiang LIU ; Haiyang WANG ; Xueyi CHEN ; Peng XIE
Chinese Medical Journal 2023;136(11):1261-1277
In the last decade, it has become increasingly recognized that a balanced gut microbiota plays an important role in maintaining the health of the host. Numerous clinical and preclinical studies have shown that changes in gut microbiota composition are associated with a variety of neurological diseases, e.g., Parkinson's disease, Alzheimer's disease, and myasthenia gravis. However, the underlying molecular mechanisms are complex and remain unclear. Behavioral phenotypes can be transmitted from humans to animals through gut microbiota transplantation, indicating that the gut microbiota may be an important regulator of neurological diseases. However, further research is required to determine whether animal-based findings can be extended to humans and to elucidate the relevant potential mechanisms by which the gut microbiota regulates neurological diseases. Such investigations may aid in the development of new microbiota-based strategies for diagnosis and treatment and improve the clinical management of neurological disorders. In this review, we describe the dysbiosis of gut microbiota and the corresponding mechanisms in common neurological diseases, and discuss the potential roles that the intestinal microbiome may play in the diagnosis and treatment of neurological disorders.
Animals
;
Humans
;
Gastrointestinal Microbiome/physiology*
;
Nervous System Diseases
;
Parkinson Disease
;
Microbiota
;
Brain
5.Fecal transplantation can alleviate tic severity in a Tourette syndrome mouse model by modulating intestinal flora and promoting serotonin secretion.
Hua LI ; Yong WANG ; Changying ZHAO ; Jian LIU ; Lei ZHANG ; Anyuan LI
Chinese Medical Journal 2022;135(6):707-713
BACKGROUND:
: Tourette syndrome (TS) is a neuropsychiatric disorder with onset in childhood that warrants effective therapies. Gut microbiota can affect central physiology and function via the microbiota-gut-brain axis. Therefore, the gut microbiota plays an important role in some mental illnesses. A small clinical trial showed that fecal microbiota transplantation (FMT) may alleviate TS symptoms in children. Herein, FMT effects and mechanisms were explored in a TS mouse model.
METHODS:
: TS mice model (TSMO) (n = 80) were established with 3,3'-iminodipropionitrile, and 80 mice were used as controls. Mice were grouped into eight groups and were subjected to FMT with feces from children or mice with or without TS, or were given probiotics. Fecal specimens were collected 3 weeks after FMT. 16S rRNA sequencing, behavioral observation, and serum serotonin (5-HT) assay were performed. Differences between groups were analyzed using Mann-Whitney U test and Kolmogorov-Smirnov (KS) tests.
RESULTS:
: A total of 18 discriminative microbial signatures (linear discriminant analysis score > 3) that varied significantly between TS and healthy mice (CONH) were identified. A significant increase in Turicibacteraceae and Ruminococcaceae in TSMO after FMT was observed (P < 0.05). Compared with non-transplanted TSMO, the symptoms of those transplanted with feces from CONH were alleviated (W = 336, P = 0.046). In the probiotic and FMT experiments, the serum 5-HT levels significantly increased in TSMO that received probiotics (KS = 1.423, P = 0.035) and in those transplanted with feces from CONH (W = 336.5, P = 0.046) compared with TSMO without transplantation.
CONCLUSIONS
: This study suggests that FMT may ameliorate TS by promoting 5-HT secretion, and it provides new insights into the underlying mechanisms of FMT as a treatment for TS.
Animals
;
Disease Models, Animal
;
Fecal Microbiota Transplantation
;
Gastrointestinal Microbiome/physiology*
;
Mice
;
RNA, Ribosomal, 16S/genetics*
;
Serotonin
;
Tics
;
Tourette Syndrome/therapy*
6.Recent progress in photosynthetic microbial co-culture systems.
Li ZHANG ; Xinyu SONG ; Lei CHEN ; Weiwen ZHANG
Chinese Journal of Biotechnology 2020;36(4):652-665
Co-culture systems consisted of photosynthetic microorganisms and others heterotrophic microbes have attracted great attention in recent years. These systems show many advantages when compared with single culture grown under autotrophic conditions, such as less vulnerable to pollution and more stability, thus have been applied to wastewater treatment, soil remediation, biodegradable harmful substances, and production of high value-added products. In order to explore basic theory and further applications, we summarize here recent progresses in artificial co-culture systems of using photosynthetic microorganisms, to provide a current scientific understanding for the rational design of the co-culture system based on photosynthetic microorganisms using synthetic biology.
Coculture Techniques
;
Heterotrophic Processes
;
Microbiological Techniques
;
trends
;
Microbiota
;
physiology
;
Photosynthesis
;
physiology
;
Synthetic Biology
;
trends
7.Chinese experts consensus on standardized methodology and clinical application of fecal microbiota transplantation.
Chinese Journal of Gastrointestinal Surgery 2020;23(Z1):5-13
Fecal microbiota transplantation (FMT) is to transplant the functional bacteria in the feces of healthy people into the patients' intestines, rebuild the new balance of intestinal flora, and achieve the treatment goals of intestinal and extraintestinal diseases. In the past 10 years, FMT has made a breakthrough in the treatment of intestinal and extraintestinal diseases, which is highly expected to treat difficult diseases. However, due to the complexity of FMT methodology and the lack of a unified standard, there is a high heterogeneity in FMT efficacy among various researches, greatly affected its clinical application. Under the initiative of Parenteral and Enteral Nutrition Branch of Chinese Medical Association, Enhanced Recovery after Surgery Branch of China International Health Care Promotion Exchange Association, China Microecological Treatment Innovation Alliance, and Microecology Committee of Shanghai Preventive Medicine Association, the first expert consensus on standardized methodology and clinical application of FMT was established in China, with a view to improving the efficacy of FMT, reducing the incidence of adverse reactions and promoting the clinical application of FMT.
China
;
Consensus
;
Fecal Microbiota Transplantation
;
adverse effects
;
methods
;
standards
;
Feces
;
microbiology
;
Gastrointestinal Microbiome
;
physiology
;
Humans
;
Treatment Outcome
9.Oral microbiomes: more and more importance in oral cavity and whole body.
Lu GAO ; Tiansong XU ; Gang HUANG ; Song JIANG ; Yan GU ; Feng CHEN
Protein & Cell 2018;9(5):488-500
Microbes appear in every corner of human life, and microbes affect every aspect of human life. The human oral cavity contains a number of different habitats. Synergy and interaction of variable oral microorganisms help human body against invasion of undesirable stimulation outside. However, imbalance of microbial flora contributes to oral diseases and systemic diseases. Oral microbiomes play an important role in the human microbial community and human health. The use of recently developed molecular methods has greatly expanded our knowledge of the composition and function of the oral microbiome in health and disease. Studies in oral microbiomes and their interactions with microbiomes in variable body sites and variable health condition are critical in our cognition of our body and how to make effect on human health improvement.
Human Body
;
Humans
;
Microbiota
;
physiology
;
Mouth
;
microbiology
;
Mouth Diseases
;
microbiology
;
therapy
10.Beyond Hygiene: Commensal Microbiota and Allergic Diseases.
Sung Wook HONG ; Kwang Soon KIM ; Charles D SURH
Immune Network 2017;17(1):48-59
Complex communities of microorganisms, termed commensal microbiota, inhabit mucosal surfaces and profoundly influence host physiology as well as occurrence of allergic diseases. Perturbing factors such as the mode of delivery, dietary fibers and antibiotics can influence allergic diseases by altering commensal microbiota in affected tissues as well as in intestine. Here, we review current findings on the relationship between commensal microbiota and allergic diseases, and discuss the underlying mechanisms that contribute to the regulation of allergic responses by commensal microbiota.
Anti-Bacterial Agents
;
Asthma
;
Dermatitis, Atopic
;
Dietary Fiber
;
Food Hypersensitivity
;
Hygiene*
;
Intestines
;
Microbiota*
;
Physiology

Result Analysis
Print
Save
E-mail