1.Erratum to ‘Genomic biomarkers to predict response to atezolizumab plus bevacizumab immunotherapy in hepatocellular carcinoma: Insights from the IMbrave150 trial’ Clin Mol Hepatol 2024;30:807-823
Sun Young YIM ; Sung Hwan LEE ; Seung-Woo BAEK ; Bohwa SOHN ; Yun Seong JEONG ; Sang-Hee KANG ; Kena PARK ; Hyewon PARK ; Sunyoung S. LEE ; Ahmed O. KASEB ; Young Nyun PARK ; Sun-Hee LEEM ; Michael A. CURRAN ; Ji Hoon KIM ; Ju-Seog LEE
Clinical and Molecular Hepatology 2025;31(2):669-670
2.Liver organoids: Current advances and future applications for hepatology
Yohan KIM ; Minseok KANG ; Michael Girma MAMO ; Michael ADISASMITA ; Meritxell HUCH ; Dongho CHOI
Clinical and Molecular Hepatology 2025;31(Suppl):S327-S348
The creation of self-organizing liver organoids represents a significant, although modest, step toward addressing the ongoing organ shortage crisis in allogeneic liver transplantation. However, researchers have recognized that achieving a fully functional whole liver remains a distant goal, and the original ambition of organoid-based liver generation has been temporarily put on hold. Instead, liver organoids have revolutionized the field of hepatology, extending their influence into various domains of precision and molecular medicine. These 3D cultures, capable of replicating key features of human liver function and pathology, have opened new avenues for human-relevant disease modeling, CRISPR gene editing, and high-throughput drug screening that animal models cannot accomplish. Moreover, advancements in creating more complex systems have led to the development of multicellular assembloids, dynamic organoid-on-chip systems, and 3D bioprinting technologies. These innovations enable detailed modeling of liver microenvironments and complex tissue interactions. Progress in regenerative medicine and transplantation applications continues to evolve and strives to overcome the obstacles of biocompatibility and tumorigenecity. In this review, we examine the current state of liver organoid research by offering insights into where the field currently stands, and the pivotal developments that are shaping its future.
3.Erratum to ‘Genomic biomarkers to predict response to atezolizumab plus bevacizumab immunotherapy in hepatocellular carcinoma: Insights from the IMbrave150 trial’ Clin Mol Hepatol 2024;30:807-823
Sun Young YIM ; Sung Hwan LEE ; Seung-Woo BAEK ; Bohwa SOHN ; Yun Seong JEONG ; Sang-Hee KANG ; Kena PARK ; Hyewon PARK ; Sunyoung S. LEE ; Ahmed O. KASEB ; Young Nyun PARK ; Sun-Hee LEEM ; Michael A. CURRAN ; Ji Hoon KIM ; Ju-Seog LEE
Clinical and Molecular Hepatology 2025;31(2):669-670
4.Liver organoids: Current advances and future applications for hepatology
Yohan KIM ; Minseok KANG ; Michael Girma MAMO ; Michael ADISASMITA ; Meritxell HUCH ; Dongho CHOI
Clinical and Molecular Hepatology 2025;31(Suppl):S327-S348
The creation of self-organizing liver organoids represents a significant, although modest, step toward addressing the ongoing organ shortage crisis in allogeneic liver transplantation. However, researchers have recognized that achieving a fully functional whole liver remains a distant goal, and the original ambition of organoid-based liver generation has been temporarily put on hold. Instead, liver organoids have revolutionized the field of hepatology, extending their influence into various domains of precision and molecular medicine. These 3D cultures, capable of replicating key features of human liver function and pathology, have opened new avenues for human-relevant disease modeling, CRISPR gene editing, and high-throughput drug screening that animal models cannot accomplish. Moreover, advancements in creating more complex systems have led to the development of multicellular assembloids, dynamic organoid-on-chip systems, and 3D bioprinting technologies. These innovations enable detailed modeling of liver microenvironments and complex tissue interactions. Progress in regenerative medicine and transplantation applications continues to evolve and strives to overcome the obstacles of biocompatibility and tumorigenecity. In this review, we examine the current state of liver organoid research by offering insights into where the field currently stands, and the pivotal developments that are shaping its future.
5.Erratum to ‘Genomic biomarkers to predict response to atezolizumab plus bevacizumab immunotherapy in hepatocellular carcinoma: Insights from the IMbrave150 trial’ Clin Mol Hepatol 2024;30:807-823
Sun Young YIM ; Sung Hwan LEE ; Seung-Woo BAEK ; Bohwa SOHN ; Yun Seong JEONG ; Sang-Hee KANG ; Kena PARK ; Hyewon PARK ; Sunyoung S. LEE ; Ahmed O. KASEB ; Young Nyun PARK ; Sun-Hee LEEM ; Michael A. CURRAN ; Ji Hoon KIM ; Ju-Seog LEE
Clinical and Molecular Hepatology 2025;31(2):669-670
6.Liver organoids: Current advances and future applications for hepatology
Yohan KIM ; Minseok KANG ; Michael Girma MAMO ; Michael ADISASMITA ; Meritxell HUCH ; Dongho CHOI
Clinical and Molecular Hepatology 2025;31(Suppl):S327-S348
The creation of self-organizing liver organoids represents a significant, although modest, step toward addressing the ongoing organ shortage crisis in allogeneic liver transplantation. However, researchers have recognized that achieving a fully functional whole liver remains a distant goal, and the original ambition of organoid-based liver generation has been temporarily put on hold. Instead, liver organoids have revolutionized the field of hepatology, extending their influence into various domains of precision and molecular medicine. These 3D cultures, capable of replicating key features of human liver function and pathology, have opened new avenues for human-relevant disease modeling, CRISPR gene editing, and high-throughput drug screening that animal models cannot accomplish. Moreover, advancements in creating more complex systems have led to the development of multicellular assembloids, dynamic organoid-on-chip systems, and 3D bioprinting technologies. These innovations enable detailed modeling of liver microenvironments and complex tissue interactions. Progress in regenerative medicine and transplantation applications continues to evolve and strives to overcome the obstacles of biocompatibility and tumorigenecity. In this review, we examine the current state of liver organoid research by offering insights into where the field currently stands, and the pivotal developments that are shaping its future.
7.Advancing the role of higher education institutions in attaining the health-related sustainable development goals: Proceedings of the 53rd Asia Pacific Academic Consortium for Public Health, 21-23 September 2022, Philippines
Maria Margarita M. Lota ; Paul Michael R. Hernandez ; Vivien Fe F. Fadrilan-camacho ; Fresthel Monica M. Climacosa ; Francis Andrew B. Cube ; Kim Leonard G. Dela luna ; Crystal Amiel M. Estrada ; Emerito Jose A. Faron ; Fernando B. Garcia jr. ; Myra S. Mistica ; Frederick S. Nieto ; Sharon Yvette Angelina M. Villanueva ; Vicente Y. Belizario jr.
Acta Medica Philippina 2025;59(4):10-13
Higher Education Institutions (HEIs) are acknowledged as key drivers in realizing health-related Sustainable Development Goals (SDGs). The University of the Philippines Manila, College of Public Health (UP CPH) together with the Asia-Pacific Academic Consortium for Public Health (APACPH), hosted the 53rd APACPH International Conference last 21-23 September 2022. The conference discussed current issues relating to the attainment of SDGs and promoted collaboration of leading academic institutions and other stakeholders in addressing various public health challenges. The conference revolved around the challenges and opportunities in attaining health-related SDGs, and the good practices and roles of HEIs in addressing health disparities. The lack of certificati on framework of public health tertiary programs, pedagogy and infrastructure, and ambiguous roles and network of public health professionals were discussed. The conference served as a platform for discussing potential resolutions and ways forward in addressing these challenges. Opportunities for improvement such as updating of policies and curricula, strengthening of internship and community engagement programs, establishment of capacity-building partnerships and programs, and developing multidisciplinary-competent faculty and students were identified. This paper providesthe highlights of the conference focusing on the good practices and roles of HEIs in addressing health disparities, the impact of COVID-19 pandemic, and other issues and challenges in attaining SDGs.
Human ; Sustainable Development ; Sustainable Development Goals ; Public Health
8.Comparison of acute heart rate variability (HRV) response between neuromuscular and metabolic training in collegiate high-intensity intermittent sport athletes: A pilot study protocol
Kris Anthony T. Agarao ; Edwin Dwight De mesa ; Ivan Neil Gomez ; Angelica Phoebe Rane Mendinueto ; Aaron Miguel Ng ; Beatrice Therese Agustin ; Michael Kaleb Kim ; Sophia Anne Baetiong ; Reiniel Christian Rafael ; Jayemarie Gene Taguibao
Philippine Journal of Allied Health Sciences 2025;9(1):43-50
BACKGROUND
Heart rate variability (HRV) is a common tool for assessing autonomic nervous system activity and monitoring training load in athletes. However, limited research has explored how HRV responds to different forms of resistance training, particularly in high-intensity intermittent sports like basketball and football.
OBJECTIVEThis study aims to compare the acute HRV responses between neuromuscular and metabolic training in collegiate athletes involved in high-intensity intermittent sports.
STUDY DESIGNA comparative cross-sectional study with a quasi-experimental crossover design will be employed.
METHODSCollegiate athletes will be randomly assigned to undergo both neuromuscular and metabolic training sessions with a one-week wash-out period in between. HRV data will be recorded using the Polar H10 chest strap during each session.
DATA ANALYSISDescriptive statistics will summarize salient participant characteristics and HRV measurements. Inferential analysis will use paired t-tests or Wilcoxon signed-rank tests based on normality, assessed via the Kolmogorov-Smirnov test. All statistical analyses will be conducted using the IBM SPSS (ver.25) with a confidence interval set. at 95% and a critical α equal to 0.05.
EXPECTED RESULTSNeuromuscular training is expected to elicit higher low-frequency (LF) power and an increased LF/HF ratio, reflecting greater sympathetic activation, while metabolic training is expected to show lower LF power and a decreased LF/HF ratio, indicating a more balanced autonomic response. These findings will offer insights into the differential autonomic impacts of these training modalities.
Human ; Heart Rate ; Nervous System ; Sympathetic Nervous System
9.Clinical Trial Protocol for ROSELLA:a phase 3 study of relacorilant in combination with nab-paclitaxel versus nab-paclitaxel monotherapy in advanced platinum-resistant ovarian cancer
Alexander B. OLAWAIYE ; Jae-Weon KIM ; Andrea BAGAMERI ; Erin BISHOP ; Anita CHUDECKA-GŁAZ ; Alix DEVAUX ; Laurence GLADIEFF ; Mary E. GORDINIER ; Jacob KORACH ; Michael E. MCCOLLUM ; Linda MILESHKIN ; Bradley J. MONK ; Shibani NICUM ; Angélica NOGUEIRA-RODRIGUES ; Ana OAKNIN ; David M. O’MALLEY ; Mauro ORLANDO ; Lyndah DREILING ; Iulia C. TUDOR ; Domenica LORUSSO
Journal of Gynecologic Oncology 2024;35(4):e111-
Background:
Ovarian cancer has the highest mortality among gynecologic cancers, primarily because it typically is diagnosed at a late stage and because of the development of chemoresistance in recurrent disease. Improving outcomes in women with platinumresistant ovarian cancer is a substantial unmet need. Activation of the glucocorticoidreceptor (GR) by cortisol has been shown to suppress the apoptotic pathways used by cytotoxic agents, limiting their efficacy. Selective GR modulation may be able to counteract cortisol’s antiapoptotic effects, enhancing chemotherapy’s efficacy. A previous phase 2 study has shown that adding intermittently dosed relacorilant, a selective GR modulator, to nab-paclitaxel improved outcomes, including progression-free survival (PFS) and overall survival (OS), with minimal added toxicity, in women with recurrent platinum-resistant ovarian cancer. The ROSELLA study aims to confirm and expand on these findings in a larger population.
Methods
ROSELLA is a phase 3, randomized, 2-arm, open-label, global multicenter study in women with recurrent, platinum-resistant, high-grade serous epithelial ovarian, primary peritoneal, or fallopian tube cancer. Eligible participants have received 1 to 3 lines of prior systemic anticancer therapy, including ≥1 prior line of platinum therapy and prior treatment with bevacizumab, with documented progressive disease or intolerance to the most recent therapy. There is no biomarker-based requirement for participant selection. Participants are randomized 1:1 to receive intermittently dosed relacorilant in combination with nabpaclitaxel or nab-paclitaxel monotherapy. The study’s primary efficacy endpoint is PFS as assessed by blinded independent central review. Secondary efficacy endpoints include OS, investigator-assessed PFS, objective response rate, best overall response, duration of response, clinical benefit rate at 24 weeks, and cancer antigen 125 response. The study is also evaluating safety and patient-reported outcomes.Trial Registration: ClinicalTrials.gov Identifier: NCT05257408; European Union Drug Regulating Authorities Clinical Trials Database Identifier: 2022-000662-18
10.Clinical Trial Protocol for ROSELLA:a phase 3 study of relacorilant in combination with nab-paclitaxel versus nab-paclitaxel monotherapy in advanced platinum-resistant ovarian cancer
Alexander B. OLAWAIYE ; Jae-Weon KIM ; Andrea BAGAMERI ; Erin BISHOP ; Anita CHUDECKA-GŁAZ ; Alix DEVAUX ; Laurence GLADIEFF ; Mary E. GORDINIER ; Jacob KORACH ; Michael E. MCCOLLUM ; Linda MILESHKIN ; Bradley J. MONK ; Shibani NICUM ; Angélica NOGUEIRA-RODRIGUES ; Ana OAKNIN ; David M. O’MALLEY ; Mauro ORLANDO ; Lyndah DREILING ; Iulia C. TUDOR ; Domenica LORUSSO
Journal of Gynecologic Oncology 2024;35(4):e111-
Background:
Ovarian cancer has the highest mortality among gynecologic cancers, primarily because it typically is diagnosed at a late stage and because of the development of chemoresistance in recurrent disease. Improving outcomes in women with platinumresistant ovarian cancer is a substantial unmet need. Activation of the glucocorticoidreceptor (GR) by cortisol has been shown to suppress the apoptotic pathways used by cytotoxic agents, limiting their efficacy. Selective GR modulation may be able to counteract cortisol’s antiapoptotic effects, enhancing chemotherapy’s efficacy. A previous phase 2 study has shown that adding intermittently dosed relacorilant, a selective GR modulator, to nab-paclitaxel improved outcomes, including progression-free survival (PFS) and overall survival (OS), with minimal added toxicity, in women with recurrent platinum-resistant ovarian cancer. The ROSELLA study aims to confirm and expand on these findings in a larger population.
Methods
ROSELLA is a phase 3, randomized, 2-arm, open-label, global multicenter study in women with recurrent, platinum-resistant, high-grade serous epithelial ovarian, primary peritoneal, or fallopian tube cancer. Eligible participants have received 1 to 3 lines of prior systemic anticancer therapy, including ≥1 prior line of platinum therapy and prior treatment with bevacizumab, with documented progressive disease or intolerance to the most recent therapy. There is no biomarker-based requirement for participant selection. Participants are randomized 1:1 to receive intermittently dosed relacorilant in combination with nabpaclitaxel or nab-paclitaxel monotherapy. The study’s primary efficacy endpoint is PFS as assessed by blinded independent central review. Secondary efficacy endpoints include OS, investigator-assessed PFS, objective response rate, best overall response, duration of response, clinical benefit rate at 24 weeks, and cancer antigen 125 response. The study is also evaluating safety and patient-reported outcomes.Trial Registration: ClinicalTrials.gov Identifier: NCT05257408; European Union Drug Regulating Authorities Clinical Trials Database Identifier: 2022-000662-18


Result Analysis
Print
Save
E-mail