1.Pharmacokinetics and anti-inflammatory activity of cannabidiol/ γ-polyglutamic acid-g-cholesterol nanomicelles.
Rui LI ; Li-Yan LU ; Chu XU ; Rui HAO ; Xiao YU ; Rui GUO ; Jue CHEN ; Wen-Hui RUAN ; Ying-Li WANG
China Journal of Chinese Materia Medica 2025;50(2):534-541
In this study, the pharmacokinetic characteristics and tissue distribution of cannabidiol(CBD)/γ-polyglutamic acid-g-cholesterol(γ-PGA-g-CHOL) nanomicelles [CBD/(γ-PGA-g-CHOL)NMs] were investigated by pharmacokinetic experiments, and the effect of CBD/(γ-PGA-g-CHOL)NMs on the lipopolysaccharide(LPS)-induced inflammatory damage of cells was evaluated by cell experiments. CBD/(γ-PGA-g-CHOL)NMs were prepared by dialysis. The CBD concentrations in the plasma samples of male SD rats treated with CBD and CBD/(γ-PGA-g-CHOL)NMs were investigated, and the pharmacokinetic parameters were calculated and compared. UPLC-MS/MS was employed to determine the concentration of CBD in tissue samples. The heart, liver, spleen, lung, kidney, and muscle samples were collected at different time points to explore the tissue distribution of CBD and CBD/(γ-PGA-g-CHOL)NMs. The Caco-2 cell model of LPS-induced inflammation was established, and the cell viability, transepithelial electrical resistance(TEER), and secretion levels of inflammatory cytokines were determined to compare the anti-inflammatory activity between the two groups. The results showed that CBD/(γ-PGA-g-CHOL)NMs had the average particle size of(163.1±2.3)nm, drug loading of 8.78%±0.28%, and encapsulation rate of 84.46%±0.35%. Compared with CBD, CBD/(γ-PGA-g-CHOL)NMs showed increased peak concentration(C_(max)) and prolonged peak time(t_(max)) and mean residence time(MRT_(0-t)). Within 24 h, the tissue distribution concentration of CBD/(γ-PGA-g-CHOL)NMs was higher than that of CBD. In addition, both CBD and CBD/(γ-PGA-g-CHOL)NMs significantly enhanced Caco-2 cell viability and TEER, lowered the secretion levels of inflammatory cytokines, and alleviated inflammation. Moreover, CBD/(γ-PGA-g-CHOL)NMs demonstrated stronger anti-inflammatory effect. It can be inferred that γ-PGA-g-CHOL blank nanomicelles are good carriers of CBD, being capable of prolonging the circulation time of CBD in the blood, improving the bioavailability and tissue distribution concentration of CBD, and protecting against LPS-induced inflammatory injury. The findings can provide an experimental basis for the development and clinical application of oral CBD preparations.
Animals
;
Cannabidiol/administration & dosage*
;
Polyglutamic Acid/analogs & derivatives*
;
Humans
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Anti-Inflammatory Agents/administration & dosage*
;
Micelles
;
Caco-2 Cells
;
Cholesterol/pharmacokinetics*
;
Tissue Distribution
;
Nanoparticles/chemistry*
2.EGCG as a therapeutic agent: a systematic review of recent advances and challenges in nanocarrier strategies.
Chee Ning WONG ; Yang Mooi LIM ; Kai Bin LIEW ; Yik-Ling CHEW ; Ang-Lim CHUA ; Siew-Keah LEE
Journal of Zhejiang University. Science. B 2025;26(7):633-656
Epigallocatechin-3-gallate (EGCG), a bioactive polyphenol abundant in green tea, has garnered significant attention for its diverse therapeutic applications, ranging from antioxidant and anti-inflammatory effects to potential anticancer properties. Despite its immense promise, the practical utilization of EGCG in therapeutic settings as a medication has been hampered by inherent limitations of this drug, including poor bioavailability, instability, and rapid degradation. This review comprehensively explores the current challenges associated with the application of EGCG and evaluates the potential of nanoparticle-based formulations in addressing these limitations. Nanoparticles, with their unique physicochemical properties, offer a platform for the enhanced stability, bioavailability, and targeted delivery of EGCG. Various nanoparticle strategies, including polymeric nanoparticle, micelle, lipid-based nanocarrier, metal nanoparticle, and silica nanoparticle, are currently employed to enhance EGCG stability and pharmacological activity. This review concludes that the particle sizes of most of these formulated nanocarriers fall within 300 nm and their encapsulation efficiency ranges from 51% to 97%. Notably, the pharmacological activities of EGCG-loaded nanoparticles, such as antioxidative, anti-inflammatory, anticancer, and antimicrobial effects, are significantly enhanced compared to those of free EGCG. By critically analyzing the existing literature and highlighting recent advancements, this article provides valuable insights into the promising prospects of nanoparticle-mediated EGCG formulations, paving the way for the development of more effective and clinically viable therapeutic strategies.
Animals
;
Humans
;
Anti-Inflammatory Agents/administration & dosage*
;
Antineoplastic Agents/administration & dosage*
;
Antioxidants/administration & dosage*
;
Biological Availability
;
Catechin/analogs & derivatives*
;
Micelles
;
Particle Size
;
Nanoparticle Drug Delivery System/chemistry*
3.Glycyrrhizic acid-based multifunctional nanoplatform for tumor microenvironment regulation.
Meng XIAO ; Zhiqing GUO ; Yating YANG ; Chuan HU ; Qian CHENG ; Chen ZHANG ; Yihan WU ; Yanfen CHENG ; Wui Lau Man BENSON ; Sheung Mei Ng SHAMAY ; George Pak-Heng LEUNG ; Jingjing LI ; Huile GAO ; Jinming ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(12):1089-1099
Natural compounds demonstrate unique therapeutic advantages for cancer treatment, primarily through direct tumor suppression or interference with the tumor microenvironment (TME). Glycyrrhizic acid (GL), a bioactive ingredient derived from the medicinal herb Glycyrrhiza uralensis Fisch., and its sapogenin glycyrrhetinic acid (GA), have been recognized for their ability to inhibit angiogenesis and remodel the TME. Consequently, the combination of GL with other therapeutic agents offers superior therapeutic benefits. Given GL's amphiphilic structure, self-assembly capability, and liver cancer targeting capacity, various GL-based nanoscale drug delivery systems have been developed. These GL-based nanosystems exhibit angiogenesis suppression and TME regulation properties, synergistically enhancing anti-cancer effects. This review summarizes recent advances in GL-based nanosystems, including polymer-drug micelles, drug-drug assembly nanoparticles (NPs), liposomes, and nanogels, for cancer treatment and tumor postoperative care, providing new insights into the anti-cancer potential of natural compounds. Additionally, the review discusses existing challenges and future perspectives for translating GL-based nanosystems from bench to bedside.
Animals
;
Humans
;
Antineoplastic Agents/therapeutic use*
;
Glycyrrhizic Acid/therapeutic use*
;
Liposomes/chemistry*
;
Micelles
;
Nanoparticles/chemistry*
;
Neoplasms/pathology*
;
Tumor Microenvironment/drug effects*
;
Nanoparticle Drug Delivery System/therapeutic use*
4.Expression, purification and micelle reconstruction of the transmembrane domain of the human amyloid precursor protein for NMR studies.
Xiaoyu SUN ; Xuechen ZHAO ; Wen CHEN
Chinese Journal of Biotechnology 2023;39(4):1633-1643
The multiple-step cleavage of amyloid precursor protein (APP) generates amyloid-β peptides (Aβ), highly toxic molecules causing Alzheimer's disease (AD). The nonspecific cleavage between the transmembrane region of APP (APPTM) and γ-secretase is the key step of Aβ generation. Reconstituting APPTM under physiologically-relevant conditions is crucial to investigate how it interacts with γ-secretase and for future AD drug discovery. Although producing recombinant APPTM was reported before, the large scale purification was hindered by the use of biological protease in the presence of membrane protein. Here, we expressed recombinant APPTM in Escherichia coli using the pMM-LR6 vector and recovered the fusion protein from inclusion bodies. By combining Ni-NTA chromatography, cyanogen bromide cleavage, and reverse phase high performance liquid chromatography (RP-HPLC), isotopically-labeled APPTM was obtained in high yield and high purity. The reconstitution of APPTM into dodecylphosphocholine (DPC) micelle generated mono dispersed 2D 15N-1H HSQC spectra in high quality. We successfully established an efficient and reliable method for the expression, purification and reconstruction of APPTM, which may facilitate future investigation of APPTM and its complex in more native like membrane mimetics such as bicelle and nanodiscs.
Humans
;
Amyloid beta-Protein Precursor/chemistry*
;
Micelles
;
Amyloid Precursor Protein Secretases/metabolism*
;
Magnetic Resonance Spectroscopy
;
Recombinant Proteins
5.Pharmacokinetics, pharmacodynamics, and tissue distribution of oral co-loaded puerarin/daidzein mixed micelles in rats.
Wen-Ting WU ; Zi-Lu GUO ; Shu-Chao GE ; Wen-Liang KUANG ; Wen-Dong LI ; Shang-Dian WANG ; Peng LIU ; Zhi-Wei ZHOU ; Wei-Feng ZHU
China Journal of Chinese Materia Medica 2023;48(18):5068-5077
This study investigated the drug delivery performance of oral co-loaded puerarin(PUE) and daidzein(DAZ) mixed micelles(PUE/DAZ-FS/PMMs) from the perspectives of pharmacokinetics, pharmacodynamics, and tissue distribution. The changes in PUE plasma concentration in rats were evaluated based on PUE suspension, single drug-loaded micelles(PUE-FS/PMMs), and co-loaded micelles(PUE/DAZ-FS/PMMs). Spontaneously hypertensive rats(SHR) were used to monitor systolic blood pressure, diastolic blood pressure, and mean arterial pressure for 10 weeks after administration by tail volume manometry. The content of PUE in the heart, liver, spleen, lung, kidney, brain, and testes was determined using LC-MS/MS. The results showed that compared with PUE suspension and PUE-FS/PMMs, PUE/DAZ-FS/PMMs significantly increased C_(max) in rats(P<0.01) and had a relative bioavailability of 122%. The C_(max), AUC_(0-t), AUC_(0-∞), t_(1/2), and MRT of PUE/DAZ-FS/PMMs were 1.77, 1.22, 1.22, 1.17, and 1.13 times higher than those of PUE suspension, and 1.76, 1.16, 1.08, 0.84, and 0.78 times higher than those of PUE-FS/PMMs, respectively. Compared with the model control group, PUE/DAZ-FS/PMMs significantly reduced systolic blood pressure, diastolic blood pressure, and mean arterial pressure in SHR rats(P<0.05). The antihypertensive effect of PUE/DAZ-FS/PMMs was greater than that of PUE suspension, and even greater than that of PUE-FS/PMMs at high doses. Additionally, the distribution of PMMs in various tissues showed dose dependency. The distribution of PMMs in the kidney and liver, which are metabolically related tissues, was lower than that in the suspension group, while the distribution in the brain was higher than that in the conventional dose group. In conclusion, PUE/DAZ-FS/PMMs not only improved the bioavailability of PUE and synergistically enhanced its therapeutic effect but also prolonged the elimination of the drug to some extent. Furthermore, the micelles facilitated drug penetration through the blood-brain barrier. This study provides a foundation for the development of co-loaded mixed micelles containing homologous components.
Rats
;
Animals
;
Micelles
;
Tissue Distribution
;
Chromatography, Liquid
;
Tandem Mass Spectrometry
;
Rats, Inbred SHR
;
Isoflavones/pharmacology*
6.Research progress on liposome and nanomicelle targeted drug delivery system across blood-brain barrier.
Xu YANG ; Ling-Hui ZOU ; Wen-Ya DING ; Zhong-Bin ZHANG ; Jin-Qing CHEN ; Ji-Lang LI ; Hong-Li FENG ; Yu-Yang LI ; Ling TANG ; Jian-Fang FENG
China Journal of Chinese Materia Medica 2022;47(22):5965-5977
The blood-brain barrier(BBB), a protective barrier between brain tissues and brain capillaries, can prevent drugs from entering the brain tissues to exert the effect, which greatly increases the difficulty in treating brain diseases. The drug delivery system across the BBB can allow efficient drug delivery across the BBB by virtue of carriers and formulations, thereby enhancing the therapeutic effect of drugs on brain tissue diseases. Liposomes and micelles have been extensively studied with advances in the targeted therapy across the BBB for the brain due to their unique structures and drug delivery advantages. This study summarized the research status of liposome and micelle drug delivery systems across the BBB based on the literature in recent years and analyzed their application advantages and mechanism in terms of trans-BBB capability, targeting, and safety. Moreover, the problems and possible countermeasures in the research on trans-BBB liposomes and micelles were discussed according to the current clinical translation, which may provide refe-rences and ideas for the development of trans-BBB targeted nano-drugs.
Humans
;
Blood-Brain Barrier
;
Liposomes
;
Micelles
;
Drug Delivery Systems
;
Biological Transport
;
Brain
;
Brain Diseases
7.Research progress on the fluorescence resonance energy transfer-based polymer micelles as drug carriers.
Linrui JIANG ; Ni ZENG ; Qingshan MIAO ; Changqiang WU ; Shaoyun SHAN ; Hongying SU
Journal of Biomedical Engineering 2022;39(5):1022-1032
Polymer micelles formed by self-assembly of amphiphilic polymers are widely used in drug delivery, gene delivery and biosensors, due to their special hydrophobic core/hydrophilic shell structure and nanoscale. However, the structural stability of polymer micelles can be affected strongly by environmental factors, such as temperature, pH, shear force in the blood and interaction with non-target cells, leading to degradations and drug leakage as drug carriers. Therefore, researches on the structural integrity and in vivo distribution of micelle-based carriers are very important for evaluating their therapeutic effect and clinical feasibility. At present, fluorescence resonance energy transfer (FRET) technology has been widely used in real-time monitoring of aggregation, dissociation and distribution of polymer micelles ( in vitro and in vivo). In this review, the polymer micelles, characteristics of FRET technology, structure and properties of the FRET-polymer micelles are briefly introduced. Then, methods and mechanism for combinations of several commonly used fluorescent probes into polymer micelles structures, and progresses on the stability and distribution studies of FRET-polymer micelles ( in vitro and in vivo) as drug carriers are reviewed, and current challenges of FRET technology and future directions are discussed.
Micelles
;
Drug Carriers/chemistry*
;
Polymers/chemistry*
;
Fluorescence Resonance Energy Transfer
;
Polyethylene Glycols/chemistry*
8.Preparation and applications of the polymeric micelle/hydrogel nanocomposites as biomaterials.
Ni ZENG ; Linrui JIANG ; Qingshan MIAO ; Yunfei ZHI ; Shaoyun SHAN ; Hongying SU
Journal of Biomedical Engineering 2021;38(3):609-620
Polymeric hydrogels have been widely researched as drug delivery systems, wound dressings and tissue engineering scaffolds due to their unique properties such as good biocompatibility, shaping ability and similar properties to extracellular matrix. However, further development of conventional hydrogels for biomedical applications is still limited by their poor mechanical properties and self-healing properties. Currently, nanocomposite hydrogels with excellent properties and customized functions can be obtained by introducing nanoparticles into their network, and different types of nanoparticles, including carbon-based, polymer-based, inorganic-based and metal-based nanoparticle, are commonly used. Nanocomposite hydrogels incorporated with polymeric micelles can not only enhance the mechanical properties, self-healing properties and chemical properties of hydrogels, but also improve the
Biocompatible Materials
;
Hydrogels
;
Micelles
;
Nanocomposites
;
Polymers
9.Preparation of paclitaxel-loaded and folic acid-modified poly (lactic-co-glycolic acid) nano-micelles and in vitro anticancer effect on cervical cancer HeLa cells.
Xin-Jian LI ; Yun YOU ; Qiong-Ling ZHANG ; Bing-Bing ZHANG ; Lin YAN ; Ze-Min OU ; Yao ZHANG ; Yan-Jing WANG ; Yan TONG ; De-Wen LIU ; Jin-Yu WANG
China Journal of Chinese Materia Medica 2021;46(10):2481-2488
The paclitaxel-loaded and folic acid-modified poly(lactic-co-glycolic acid) nano-micelles(PTX@FA-PLGA-NMs) were prepared by the emulsion solvent evaporation method, and the parameters of paclitaxel-loaded nano-micelles were optimized with the particle size and PDI as evaluation indexes. The morphology of the nano-micelles was observed by transmission electron microscopy(TEM), and the stability, drug loading and encapsulation efficiency were systematically investigated. In vitro experiments were performed to study the cytotoxic effects of nano-micelles, apoptosis, and cellular uptake. Under the optimal parameters, the nano-micelles showed the particle size of(125.3±1.2) nm, the PDI of 0.086±0.026, the zeta potential of(-20.0±3.8) mV, the drug loading of 7.2%±0.75%, and the encapsulation efficiency of 50.7%±1.0%. The nano-micelles were in regular spherical shape as observed by TEM. The blank FA-PLGA-NMs exhibited almost no inhibitory effect on the proliferation and growth of tumor cells, while the drug-loaded nano-micelles and free PTX exhibited significant inhibitory effects. The IC_(50) of PTX@FA-PLGA-NMs and PTX was 0.56 μg·mL~(-1) and 0.66 μg·mL~(-1), respectively. The paclitaxel-loaded nano-micelles were potent in inhibiting cell migration as assessed by the scratch assay. PTX@FA-PLGA-NMs had good pro-apoptotic effect on cervical cancer HeLa cells and significantly promoted the uptake of HeLa cells. The results of in vitro experiments suggested that PTX@FA-PLGA-NMs could target and treat cervical cancer HeLa cells. Therefore, as nanodrug carriers, PTX@FA-PLGA-NMs with anti-cancer activity are a promising nano-system for improving the-rapeutic effects on tumors.
Antineoplastic Agents, Phytogenic/pharmacology*
;
Cell Line, Tumor
;
Drug Carriers
;
Female
;
Folic Acid
;
Glycolates
;
HeLa Cells
;
Humans
;
Micelles
;
Paclitaxel
;
Particle Size
;
Uterine Cervical Neoplasms/drug therapy*
10.Determination of five saponins in Xuesaitong Dropping Pills by micellar electrokinetic chromatography and evaluation method of between-batch consistency.
Shu-Nan LI ; Yi-Zhe HOU ; Le PENG ; Pian LI ; Xiang CAI ; Zheng LI ; Wen-Long LI
China Journal of Chinese Materia Medica 2021;46(22):5832-5838
The present study determined five saponins in Xuesaitong Dropping Pills(XDP) by micellar electrokinetic chromatography(MEKC), and evaluated between-batch consistency by MEKC fingerprints and similarity analysis. A background buffer was composed of 20 mmol·L~(-1) sodium tetraborate-20 mmol·L~(-1) boric acid solution(pH 8.5), 55 mmol·L~(-1) sodium dodecyl sulfate(SDS), 23 mmol·L~(-1) β-cyclodextrin, and 13% isopropyl alcohol. All separations were performed at 25 ℃,20 kV and the detection wavelength was set at 203 nm. The separation channel was a fused silica capillary with a dimension of 75 μm I.D. and a total length of 50.2 cm(effective length of 40.0 cm). The contents of notoginsenoside R_1, and ginsenosides Rg_1, Re, Rb_1, Rd were determined with their quality control ranges set. The fingerprints of XDP were established and the between-batch consistency was evaluated by similarity analysis. The contents of five saponins from the 19 batches of XDP were stable in the fixed ranges. Statistical analysis was carried out on the results of multiple batches of samples, and the specific quality control ranges were recommended as follows: notoginsenoside R_1 21.92-34.16 mg·g~(-1), ginsenosides Rg_1 83.54-131.78 mg·g~(-1), ginsenosides Re 13.58-19.82 mg·g~(-1), ginsenosides Rb_1 89.40-129.90 mg·g~(-1), and ginsenosides Rd 22.34-35.67 mg·g~(-1). Eleven characteristic peaks were identified in the fingerprints. Five peaks, notoginsenoside R_1 and ginsenosides Rg_1, Re, Rb_1, Rd, were identified with reference standards. The similarities of the 19 batches of samples were all above 0.988, indicating good between-batch consistency. This method is green and simple, and can be used for the quantitative determination and quality evaluation of XDP. It can also provide references for the quality control of other Chinese medicinal dripping pills.
Chromatography, Micellar Electrokinetic Capillary
;
Drugs, Chinese Herbal
;
Micelles
;
Quality Control
;
Saponins

Result Analysis
Print
Save
E-mail