1.Protective effect of aliskiren on renal injury in AGT-REN double transgenic hypertensive mice.
Xiao-Ling YANG ; Yan-Yan CHEN ; Hua ZHAO ; Bo-Yang ZHANG ; Xiao-Fu ZHANG ; Xiao-Jie LI ; Xiu-Hong YANG
Acta Physiologica Sinica 2025;77(3):408-418
This study aims to investigate the effects of renin inhibitor aliskiren on kidney injury in human angiotensinogen-renin (AGT-REN) double transgenic hypertensive (dTH) mice and explore its possible mechanism. The dTH mice were divided into hypertension group (HT group) and aliskiren intervention group (HT+Aliskiren group), while wild-type C57BL/6 mice were served as the control group (WT group). Blood pressure data of mice in HT+Aliskiren group were collected after 28 d of subcutaneous penetration of aliskiren (20 mg/kg), and the damage of renal tissue structure and collagen deposition were observed by HE, Masson and PAS staining. The ultrastructure of kidney was observed by transmission electron microscope. Coomassie bright blue staining and biochemical analyzer were used to detect renal function injury. The expression of renin-angiotensin system (RAS) was determined by ELISA and immunohistochemistry. The contents of superoxide dismutase (SOD) and malondialdehyde (MDA) in kidney were determined by chemiluminescence method. The content of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit p47phox, inducible nitric oxide synthase (iNOS), 3-nitrotyrosine (3-NT), NADPH oxidase 2 (NOX2) and NADPH oxidase 4 (NOX4) were detected by Western blot analysis. The results showed that compared with WT group, the blood pressure of mice in HT group was significantly increased. The renal tissue structure in HT group showed glomerular sclerosis, severe interstitial tubular injury, and increased collagen deposition. In addition, 24 h urinary protein, serum creatinine and urea levels increased. Serum and renal tissue levels of angiotensin II (Ang II) were increased, serum angiotensin-(1-7) [Ang-(1-7)] expression was decreased, and renal Ang-(1-7) expression was elevated. The expressions of ACE, Ang II type 1 receptor (AT1R) and MasR in renal tissue were increased, while the expression of ACE2 was decreased. MDA content increased, SOD content decreased, and the expressions of p47phox, iNOS, 3-NT, NOX2 and NOX4 were increased. However, aliskiren reduced blood pressure in dTH mice, improved renal structure and renal function, reduced Ang II and Ang-(1-7) levels in serum and renal tissue, reduced the expression of ACE and AT1R in renal tissue, increased the expression of ACE2 and MasR in renal tissue, and decreased the above levels of oxidative stress indexes in dTH mice. These results suggest that aliskiren may play a protective role in hypertensive renal injury by regulating the balance between ACE-Ang II-AT1R and ACE2-Ang-(1-7)-MasR axes and inhibiting oxidative stress.
Animals
;
Fumarates/therapeutic use*
;
Mice
;
Renin/antagonists & inhibitors*
;
Amides/therapeutic use*
;
Mice, Inbred C57BL
;
Hypertension/physiopathology*
;
Mice, Transgenic
;
Kidney/pathology*
;
Angiotensinogen/genetics*
;
Renin-Angiotensin System/drug effects*
;
NADPH Oxidases/metabolism*
;
Male
;
Antihypertensive Agents/pharmacology*
;
Humans
;
Superoxide Dismutase/metabolism*
;
NADPH Oxidase 4
2.Effect of Eucommiae Cortex extract mediated by ERβ/JNK pathway on learning and memory ability of APP/PS1 double-transgenic mice.
Yue LI ; Li-Li ZHANG ; Can ZHAO ; Hong-Mei ZHAO ; Yan WANG ; Jin-Lei FU ; Jie ZHANG ; Ning ZHANG ; Hong-Dan XU
China Journal of Chinese Materia Medica 2025;50(2):285-293
To study the ameliorative effect of Eucommiae Cortex extract on spatial learning disabilities in APP/PS1 double-transgenic mice and explore its relationship with estrogen receptor β(ERβ)/c-Jun N-terminal kinase(JNK) signaling pathway, sixty 3-month-old male APP/PS1 mice were randomly divided into a model group, an anti-brain failure capsule group(0.585 g·kg~(-1)), a donepezil hydrochloride group(0.65 mg·kg~(-1)), and a Eucommiae Cortex extract group(1.3 g·kg~(-1)), and 15 C57BL/6 mice of the same genetic background were set as WT control group. The learning and memory ability of mice was assessed by the Morris water maze test(MWM), the passive avoidance test(PAT), and the novel object recognition test(NOR). The histomorphological and cellular ultrastructural features of the hippocampal region of the mice were observed by hematoxylin-eosin(HE) staining and transmission electron microscopy(TEM); the molecular docking validation of the key active ingredients and the key targets was performed by using AutoDock Vina software, and the immunohistochemical method(IHC) was used to detect the ERβ expression in the dentate gyrus(DG) area of mouse hippocampus. Western blot(WB) was utilized to detect the expression of ERβ, p-JNK, and JNK in mouse hippocampal area. Compared with those in the WT control group, the results of behavioral experiments showed that the latency of the mice in the model group was significantly increased, the number of platform traversals, and the target quadrant residence time were significantly decreased in the MWM. The evasion latency was significantly reduced, and the number of errors was significantly increased in the PAT. The index of recognition of novel objects was significantly reduced in the NOR. The results of HE staining indicated that the hippocampal area of mice in the model group showed a decrease in the number of neurons, disorganization of pyramidal cell arrangement, nucleus consolidation, and other changes. TEM results showed that some neuronal nuclei in the hippocampal area had a consolidated state, slightly thickened and aberrant nuclear membranes, and fewer intracytoplasmic nidus bodies; the IHC results showed that the expression of ERβ in the hippocampal DG area of the mice was reduced. The WB results showed that the ERβ expression in the hippocampal tissue was decreased, and the p-JNK/JNK level was elevated. Compared with the model group, the Eucommiae Cortex extract group showed a significant decrease in latency, and increase in number of platform traversals and target quadrant residence time in the MWM, a significant increase in evasion latency and decrease in number of errors in the PAT, and a significant increase in the index of recognition of novel objects in the NOR. In addition, there was an increase in the number of neurons in the hippocampal area of mice. The pyramidal cells tended to be arranged in an orderly manner; the nuclei of neurons in the hippocampal area were in a better state; the expression of ERβ in the hippocampal DG area of the mice was elevated; the expression of ERβ in the hippocampal tissue was elevated, and the level of p-JNK/JNK was reduced. The effects of donepezil hydrochloride group and anti-brain failure capsule on APP/PS1 mice in terms of behavioral, HE, and TEM indexes were similar to those of Eucommiae Cortex extract, and there was no significant difference between donepezil hydrochloride group and the model group in IHC and WB experiments, and the results of molecular docking indicated that the estrogen-like components in Eucommiae Cortex extract were tightly bound to ERβ. In conclusion, the binding of Eucommiae Cortex extract to estrogen receptors, regulation of ERβ expression, and activation of ERβ/JNK signaling pathway may be one of the key mechanisms by which it improves the learning and memory ability of APP/PS1 mice.
Animals
;
Male
;
Mice
;
Mice, Transgenic
;
Memory/drug effects*
;
Mice, Inbred C57BL
;
Estrogen Receptor beta/genetics*
;
Eucommiaceae/chemistry*
;
Alzheimer Disease/psychology*
;
Amyloid beta-Protein Precursor/metabolism*
;
Presenilin-1/metabolism*
;
Humans
;
MAP Kinase Signaling System/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hippocampus/metabolism*
;
Maze Learning/drug effects*
;
Learning/drug effects*
3.Mechanism of Daotan Xixin Decoction in treating APP/PS1 mice based on high-throughput sequencing technology and bioinformatics analysis.
Bo-Lun CHEN ; Jian-Zheng LU ; Xin-Mei ZHOU ; Xiao-Dong WEN ; Yuan-Jing JIANG ; Ning LUO
China Journal of Chinese Materia Medica 2025;50(2):301-313
This study aims to investigate the therapeutic effect and mechanism of Daotan Xixin Decoction on APP/PS1 mice. Twelve APP/PS1 male mice were randomized into four groups: APP/PS1 and low-, medium-, and high-dose Daotan Xixin Decoction. Three C57BL/6 wild-type mice were used as the control group. The learning and memory abilities of mice in each group were examined by the Morris water maze test. The pathological changes of hippocampal nerve cells were observed by hematoxylin-eosin staining and Nissl staining. Immunohistochemistry was employed to detect the expression of β-amyloid(Aβ)_(1-42) in the hippocampal tissue. The high-dose Daotan Xixin Decoction group with significant therapeutic effects and the model group were selected for high-throughput sequencing. The differentially expressed gene(DEG) analysis, Gene Ontology(GO) analysis, Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis, and Gene Set Variation Analysis(GSVA) were performed on the sequencing results. RT-qPCR and Western blot were conducted to determine the mRNA and protein levels, respectively, of some DEGs. Compared with the APP/PS1 group, Daotan Xixin Decoction at different doses significantly improved the learning and memory abilities of APP/PS1 mice, ameliorated the neuropathological damage in the CA1 region of the hippocampus, increased the number of neurons, and decreased the deposition of Aβ_(1-42) in the brain. A total of 1 240 DEGs were screened out, including 634 genes with up-regulated expression and 606 genes with down-regulated expression. The GO analysis predicted the biological processes including RNA splicing and protein folding, the cellular components including spliceosome complexes and nuclear spots, and the molecular functions including unfolded protein binding and heat shock protein binding. The KEGG pathway enrichment analysis revealed the involvement of neurodegenerative disease pathways, amyotrophic lateral sclerosis, and splicing complexes. Further GSVA pathway enrichment analysis showed that the down-regulated pathways involved nuclear factor-κB(NF-κB)-mediated tumor necrosis factor-α(TNF-α) signaling pathway, UV response, and unfolded protein response, while the up-regulated pathways involved the Wnt/β-catenin signaling pathway. The results of RT-qPCR and Western blot showed that compared with the APP/PS1 group, Daotan Xixin Decoction at different doses down-regulated the mRNA and protein levels of signal transducer and activator of transcription 3(STAT3), NF-κB, and interleukin-6(IL-6) in the hippocampus. In conclusion, Daotan Xixin Decoction can improve the learning and memory abilities of APP/PS1 mice by regulating the STAT3/NF-κB/IL-6 signaling pathway.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Male
;
Alzheimer Disease/metabolism*
;
Computational Biology
;
Mice, Inbred C57BL
;
High-Throughput Nucleotide Sequencing
;
Amyloid beta-Protein Precursor/metabolism*
;
Hippocampus/metabolism*
;
Mice, Transgenic
;
Presenilin-1/metabolism*
;
Humans
;
Memory/drug effects*
;
Maze Learning/drug effects*
;
Amyloid beta-Peptides/genetics*
;
Disease Models, Animal
4.Mechanism of Jiawei Xionggui Decoction in ameliorating cognitive impairment in APP/PS1 mice based on network pharmacology and metabolomics.
Jun-Bao XIANG ; Wen WEN ; Shi-Jun XU
China Journal of Chinese Materia Medica 2025;50(2):322-342
This study explored the action mechanism of Jiawei Xionggui Decoction in the treatment of Alzheimer's disease(AD) by integrating mouse brain tissue metabolomics and network pharmacology. Six-month-old amyloid precursor protein/presenilin 1(APP/PS1) mice were selected and divided into the APP/PS1 group and Jiawei Xionggui Decoction intervention group, with age-matched C57BL/6 mice serving as controls. Cognitive abilities and pathological damage in the mice were observed. Gas chromatography-mass spectrometry/mass spectrometry(GC-MS/MS) technology was utilized to analyze the metabolic profiles of mice brain tissue. Differential metabolites were screened, and relevant metabolic pathways were enriched. Network pharmacology was adopted to screen the active components of Jiawei Xionggui Decoction, so as to construct a protein-protein interaction network of its core targets for AD treatment and conduct Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis of potential targets for Jiawei Xionggui Decoction in treating AD. Finally, a "metabolite-reaction-enzyme-gene" network was constructed for combined analysis of metabolomics and network pharmacology. The results showed that Jiawei Xionggui Decoction significantly reversed the trends of 18 differential metabolites involved in 15 metabolic pathways such as glyoxylate and dicarboxylate metabolism, glycine, serine, and threonine metabolism, pyruvate metabolism, alanine, aspartate, and glutamate metabolism, and tricarboxylic acid cycle(TCA) in mouse brain tissue. Furthermore, 383 core targets of Jiawei Xionggui Decoction were implicated in pathways like the phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway and calcium signaling pathway. Overall analysis indicated that energy metabolism, amino acid metabolism, and fatty acid metabolism were crucial metabolic pathways for Jiawei Xionggui Decoction in treating AD. The findings suggest that Jiawei Xionggui Decoction can protect neuronal cells in mouse brain tissue, thus improving cognitive impairment.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Network Pharmacology
;
Metabolomics
;
Cognitive Dysfunction/genetics*
;
Alzheimer Disease/genetics*
;
Mice, Inbred C57BL
;
Amyloid beta-Protein Precursor/metabolism*
;
Male
;
Brain/drug effects*
;
Humans
;
Presenilin-1/metabolism*
;
Protein Interaction Maps/drug effects*
;
Mice, Transgenic
;
Disease Models, Animal
5.Effect of 40 Hz pulsed magnetic field on mitochondrial dynamics and heart rate variability in dementia mice.
Lifan ZHANG ; Duyan GENG ; Guizhi XU ; Hongxia AN
Journal of Biomedical Engineering 2025;42(4):707-715
Alzheimer's disease (AD) is the most common degenerative disease of the nervous system. Studies have found that the 40 Hz pulsed magnetic field has the effect of improving cognitive ability in AD, but the mechanism of action is not clear. In this study, APP/PS1 double transgenic AD model mice were used as the research object, the water maze was used to group dementia, and 40 Hz/10 mT pulsed magnetic field stimulation was applied to AD model mice with different degrees of dementia. The behavioral indicators, mitochondrial samples of hippocampal CA1 region and electrocardiogram signals were collected from each group, and the effects of 40 Hz pulsed magnetic field on mouse behavior, mitochondrial kinetic indexes and heart rate variability (HRV) parameters were analyzed. The results showed that compared with the AD group, the loss of mitochondrial crest structure was alleviated and the mitochondrial dynamics related indexes were significantly improved in the AD + stimulated group ( P < 0.001), sympathetic nerve excitation and parasympathetic nerve inhibition were improved, and the spatial cognitive memory ability of mice was significantly improved ( P < 0.05). The preliminary results of this study show that 40 Hz pulsed magnetic field stimulation can improve the mitochondrial structure and mitochondrial kinetic homeostasis imbalance of AD mice, and significantly improve the autonomic neuromodulation ability and spatial cognition ability of AD mice, which lays a foundation for further exploring the mechanism of ultra-low frequency magnetic field in delaying the course of AD disease and realizing personalized neurofeedback therapy for AD.
Animals
;
Heart Rate/physiology*
;
Mice
;
Alzheimer Disease/therapy*
;
Mice, Transgenic
;
Mitochondrial Dynamics/radiation effects*
;
Magnetic Field Therapy/methods*
;
Magnetic Fields
;
Disease Models, Animal
;
Mitochondria
;
Male
;
Maze Learning
;
Cognition
;
Dementia/therapy*
6.A neural circuit from paraventricular hypothalamic nucleus oxytocin neurons to trigeminal nucleus caudalis GABAergic neurons modulates pain sensitization in a mouse model of chronic migraine.
Houda CHEN ; Wanyun ZOU ; Xufeng XU ; Jiang BIAN
Journal of Zhejiang University. Medical sciences 2025;54(5):641-652
OBJECTIVES:
To investigate the role of a neural pathway from oxytocin (OXT) neurons in the paraventricular hypothalamic nucleus (PVN) to γ-aminobutyric acid (GABA) neurons (GABAergic neurons) in the trigeminal nucleus caudalis (TNC) in regulating pain sensitization in a mouse model of chronic migraine and to explore the underlying mechanisms.
METHODS:
A chronic migraine mouse model was established by intraperitoneal injection of nitroglycerin (NTG, 1 mg/mL, 10 mg/kg) on days 1, 3, 5, 7, and 9. The study consisted of four parts: PartⅠ: 24 male wild-type C57BL/6J mice were divided into four groups (n=6 in each), receiving single or repeated injection of NTG or saline, respectively. Immunofluorescence was used to detect c-Fos and OXT expression in the PVN. Part Ⅱ: 6 male OXT-Cre transgenic C57BL/6J mice were used for anterograde monosynaptic tracing combined with RNAscope and immunofluorescence to identify neural projections from PVN OXT neurons to TNC GABAergic neurons. Part Ⅲ: 30 male OXT-Cre transgenic C57BL/6J mice were bilaterally injected Cre-dependent chemogenetic activation virus into the PVN. These mice were randomly divided into five groups, with six mice in each group. Mice in the clozapine N-oxide (CNO) group and the control group were intra-peritoneally injected with 0.1 mg/mL of CNO solution (1 mg/kg) and the same volume of isotonic normal saline, respectively. 3 hours after the injection, the brain tissues were harvest and c-Fos immunofluorescence staining was performed to verify the efficiency of chemogenetic activation virus. Mice in the model control group and the CNO activated model group were subjected to chronic migraine modeling, with bilateral TNC injection of isotonic normal saline and CNO, respectively, on day 10. The mice in the negative control group were bilaterally intra-TNC injected with isotonic normal saline. After 30 minutes, the Von-Frey filament and acetone tests were used to assess the mechanical pain threshold and cold pain response time in the periorbital region of the mice in these three groups. Part Ⅳ: 24 male OXT-Cre transgenic C57BL/6J mice were bilaterally injected with the Cre-dependent chemogenetic activation virus into the PVN. These mice were randomly divided into four groups, with six mice in each group. Mice in the model control group, the CNO activated model group and the atosiban group were subjected to chronic migraine modeling. On day 10, mice in the negative control group and the model control group were intraperitoneally injected with isotonic normal saline, while mice in the CNO activated model group and the atosiban group were intraperitoneally injected with CNO. After 15 minutes, mice in the atosiban group were bilaterally intra-TNC injected with atosiban, while mice in other three groups were bilaterally intra-TNC injected with isotonic normal saline containing 1% dimethyl sulfoxide. After 15 minutes, the Von-Frey filament and acetone tests were used to assess the mechanical pain threshold and cold pain response time in the periorbital region of the mice. The GABA content in the bilateral TNC was detected by high-performance liquid chromatography (HPLC).
RESULTS:
Mice with chronic migraine models exhibited reduced periorbital mechanical pain thresholds and increased periorbital cold pain reaction time, accompanied by an increase in both the number of c-Fos+ neurons and the percentage of c-Fos+ OXT neurons in the PVN (all P<0.05). The anterograde tracing virus and RNAscope combined with immunofluorescence staining showed that PVN OXT neurons projected to TNC GABAergic neurons. Immuno-fluorescence staining demonstrated that compared with the control group, the percentage of c-Fos+ OXT neurons in the PVN of CNO group increased (P<0.05). In bilateral intra-TNC drug administration experiments, compared with the model control group, the periorbital mechanical pain threshold increased, and the periorbital cold pain reaction time decreased in the CNO activated model group (both P<0.05). In intraperitoneal drug administration experiments, compared with the CNO activate model group, the periorbital mechanical pain threshold decreased, and the periorbital cold pain reaction time increased in the atosiban group (both P<0.05). HPLC analysis showed that, compared with the negative control group, the model control group and the atosiban group, GABA level of TNC in the CNO activated model group increased (all P<0.05).
CONCLUSIONS
PVN OXT neurons exert a descending facilitatory effect on GABAergic neurons in the TNC via OXT release, thereby ameliorating pain sensitization in chronic migraine.
Animals
;
Paraventricular Hypothalamic Nucleus/physiopathology*
;
Male
;
Mice, Inbred C57BL
;
Migraine Disorders/physiopathology*
;
Mice
;
GABAergic Neurons/physiology*
;
Oxytocin/physiology*
;
Disease Models, Animal
;
Neurons/physiology*
;
Mice, Transgenic
;
Neural Pathways
;
Chronic Disease
7.Dihuang Yinzi Regulates cAMP/PKA/CREB-BDNF to Improve Synaptic Plasticity in APP/PS1 Mice: A Study Based on Brain Metabolomics.
Huan-Ning JIANG ; Bo ZHANG ; Jian ZHANG ; Yan-Yan ZHOU
Chinese journal of integrative medicine 2025;31(11):991-1000
OBJECTIVE:
To explore the mechanism of Dihuang Yinzi (DHYZ) in the treatment of Alzheimer's disease (AD) by integrating metabolomics and experimental verification.
METHODS:
Forty-eight male APP/PS1 mice were divided into model, high- (DHYZ-H), medium- (DHYZ-M), and low-dose DHYZ (DHYZ-L) groups (12 mice per group) according to a random number table. Mice in DHYZ groups were gavaged with DHYZ 6.34, 12.68, and 25.35 g/(kg·d), respectively. Twelve C57BL/6 mice were gavaged with distilled water as the blank group. Metabolomics was used to analyze differential metabolites in the brains of mice. Morris water maze test was used to detect the memory abilities of mice. The hematoxylin-eosin staining and transmission electron microscopy were used to observe the general morphology and ultrastructure of neurons. The enzyme-linked immunosorbent assay was used to detect the levels of superoxide dismutase (SOD), reactive oxygen species (ROS), and amyloid β -protein 1-42 (A β1-42). The real-time quantitative polymerase chain reaction was used to detect the mRNA expressions of density-regulated protein 1 (DRP1), fission 1 (FIS1), mitofusin-1 (MFN1), and optic atrophy protein 1 (OPA1). Western blot was used to detect the protein expressions of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), cAMP response binding protein (CREB), brain-derived neurotrophic factor (BDNF), synapsin 1 (SYN1), synaptophysin (SYP), and postsynaptic density protein 95 (PSD95).
RESULTS:
A total of 82 differential metabolites were identified in the brains of APP/PS1 mice, among which 7 differential metabolites could be regulated by DHYZ. After DHYZ intervention, the memory abilities of mice significantly increased (P<0.05 or P<0.01), the number of synapses and neurons in the hippocampus increased, and the mitochondrial morphology and structure were relatively intact. The DHYZ groups exhibited a significant reduction in hippocampal ROS and A β1-42 levels, along with a significant elevation in SOD level (P<0.05 or P<0.01). The mRNA expressions of DRP1 and FIS1 were reduced, while the mRNA expressions of MFN1 and OPA1 were increased after DHYZ treatment (P<0.05 or P<0.01). The cAMP/PKA/CREB-BDNF pathway was activated, and the expressions of SYN1, SYP and PSD95 proteins were significantly increased in the DHYZ-H group (P<0.05 or P<0.01).
CONCLUSIONS
DHYZ could improve mitochondrial dynamics and synaptic plasticity in APP/PS1 mice, inhibit oxidative stress, and thereby enhancing learning and memory abilities in APP/PS1 mice. Its mechanism might be related to activation of the cAMP/PKA/CREB-BDNF signaling pathway.
Animals
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Male
;
Cyclic AMP Response Element-Binding Protein/metabolism*
;
Brain/drug effects*
;
Metabolomics
;
Mice, Inbred C57BL
;
Neuronal Plasticity/drug effects*
;
Drugs, Chinese Herbal/therapeutic use*
;
Cyclic AMP-Dependent Protein Kinases/metabolism*
;
Cyclic AMP/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Amyloid beta-Protein Precursor/metabolism*
;
Mice, Transgenic
;
Mice
;
Amyloid beta-Peptides/metabolism*
;
Signal Transduction/drug effects*
;
Alzheimer Disease/drug therapy*
;
Superoxide Dismutase/metabolism*
8.Quercetin mitigates HIV-1 gp120-induced rat astrocyte neurotoxicity via promoting G3BP1 disassembly in stress granules.
Pengwei HUANG ; Jie CHEN ; Jinhu ZOU ; Xuefeng GAO ; Hong CAO
Journal of Southern Medical University 2025;45(2):304-312
OBJECTIVES:
To explore the effect of quercetin for mitigating HIV-1 gp120-induced astrocyte neurotoxicity and its underlying mechanism.
METHODS:
Primary rat astrocytes were isolated and treated with quercetin, HIV-1 gp120, or gradient concentrations of quercetin combined with HIV-1 gp120. The formation of stress granules (SGs) in the treated cells was observed with immunofluorescence assay, and the levels of oxidative stress markers and protein expressions were measured using specific assay kits and Western blotting. HIV-1 gp120 transgenic mice were treated with quercetin (50 mg/kg) by gavage for 4 weeks, and the changes in cognitive functions and oxidative stress levels were examined by behavioral assessments, oxidative stress index analysis in serum, and immunohistochemical and Western blotting of the brain tissue.
RESULTS:
In primary rat astrocytes, treatment with quercetin significantly reduced HIV-1 gp120-induced SG formation, increased the levels of antioxidant indexes, decreased the levels of oxidative substances, and up-regulated protein level associated with SG depolymerization. In the transgenic mouse models, quercetin obviously improved the cognitive function of the rats, reduced oxidative stress levels, and promoted the expression of proteins associate with SG depolymerization in the brain tissues.
CONCLUSIONS
Quercetin mitigates HIV-1 gp120-induced astrocyte neurotoxicity and cognitive function impairment by inhibiting oxidative stress, enhancing expressions of SG depolymerization-related proteins, and promoting SG disassembly, suggesting the value of quercetin as a potential therapeutic agent for neuroprotection in HIV-associated neurocognitive disorders.
Animals
;
Quercetin/pharmacology*
;
Astrocytes/metabolism*
;
HIV Envelope Protein gp120
;
Oxidative Stress/drug effects*
;
Rats
;
Stress Granules/drug effects*
;
Mice
;
Mice, Transgenic
;
Rats, Sprague-Dawley
;
Cells, Cultured
9.Akkermansia muciniphila gavage improves gut-brain interaction disorders in gp120 transgenic mice.
Jiachun LUO ; Sodnomjamts BATZAYA ; Xuefeng GAO ; Jingyu CHEN ; Zhengying YU ; Shasha XIONG ; Hong CAO
Journal of Southern Medical University 2025;45(3):554-565
OBJECTIVES:
To explore the effect of A. muciniphila gavage on intestinal microbiota and gut-brain interaction disorders (DGBIs) in gp120tg transgenic mouse models of HIV-associated neurocognitive disorder (HAND).
METHODS:
Intestinal microbiota was detected by 16S rRNA gene sequencing in 6-, 9-, and 12-month-old wild-type (WT) mice and gp120tg transgenic mice. The 12-month-old WT and transgenic mice were divided into 2 groups for daily treatment with PBS or A.muciniphila gavage (2×108 CFU/mouse) for 6 weeks. After the treatment, immunohistochemistry, ELISA and qPCR were used to detect changes in colonic expression levels of glycosylated mucins, MBP and IL-1β, eosinophil infiltration, serum lipopolysaccharide (LPS) levels, and colonic expressions of occludin, ZO-1, IL-10, TNF-α and INF-γ mRNA. Morris water maze test and immunofluorescence assay were used to assess learning and spatial memory abilities and neuronal damage of the mice.
RESULTS:
Compared with WT mice, the transgenic mice exhibited significantly lowered Simpson's diversity of the intestinal microbiota with reduced abundance of Akkermansia genus, increased serum LPS levels and decreased colonic expression of glycosylated mucin. A.muciniphila gavage obviously ameliorated the reduction of glycosylated mucin in the transgenic mice without causing significant changes in body weight. The 12-month-old gp120tg mice had significantly decreased cdonic expressions of Occludin and ZO-1 with increased eosinophil infiltration and TNF-β, INF-γ and IL-1β levels and obviously lowered IL-10 level; all these changes were significantly mitigated by A.muciniphila gavage, which also improved cognitive impairment and neuronal loss in the hippocampus and cortex of the transgenic mice.
CONCLUSIONS
The gp120tg mice have lower intestinal microbiota richness and diversity than WT mice. The 12-month-old gp120tg mice have significantly reduced Akkermansia abundance with distinct DGBIs-related indexes, and A. muciniphila gavage can reduce intestinal barrier injury, colonic inflammation and eosinophil activation, cognitive impairment and brain neuron injury in these mice.
Animals
;
Mice, Transgenic
;
Gastrointestinal Microbiome
;
Mice
;
Brain
;
HIV Envelope Protein gp120/genetics*
;
Akkermansia
;
Disease Models, Animal
10.The Medial Prefrontal Cortex-Basolateral Amygdala Circuit Mediates Anxiety in Shank3 InsG3680 Knock-in Mice.
Jiabin FENG ; Xiaojun WANG ; Meidie PAN ; Chen-Xi LI ; Zhe ZHANG ; Meng SUN ; Tailin LIAO ; Ziyi WANG ; Jianhong LUO ; Lei SHI ; Yu-Jing CHEN ; Hai-Feng LI ; Junyu XU
Neuroscience Bulletin 2025;41(1):77-92
Anxiety disorder is a major symptom of autism spectrum disorder (ASD) with a comorbidity rate of ~40%. However, the neural mechanisms of the emergence of anxiety in ASD remain unclear. In our study, we found that hyperactivity of basolateral amygdala (BLA) pyramidal neurons (PNs) in Shank3 InsG3680 knock-in (InsG3680+/+) mice is involved in the development of anxiety. Electrophysiological results also showed increased excitatory input and decreased inhibitory input in BLA PNs. Chemogenetic inhibition of the excitability of PNs in the BLA rescued the anxiety phenotype of InsG3680+/+ mice. Further study found that the diminished control of the BLA by medial prefrontal cortex (mPFC) and optogenetic activation of the mPFC-BLA pathway also had a rescue effect, which increased the feedforward inhibition of the BLA. Taken together, our results suggest that hyperactivity of the BLA and alteration of the mPFC-BLA circuitry are involved in anxiety in InsG3680+/+ mice.
Animals
;
Prefrontal Cortex/metabolism*
;
Basolateral Nuclear Complex/metabolism*
;
Mice
;
Anxiety/metabolism*
;
Nerve Tissue Proteins/genetics*
;
Male
;
Gene Knock-In Techniques
;
Pyramidal Cells/physiology*
;
Mice, Transgenic
;
Neural Pathways/physiopathology*
;
Mice, Inbred C57BL
;
Microfilament Proteins

Result Analysis
Print
Save
E-mail