1.The inhibition effect of SOCS1 gene on the growth of human myelodysplastic syndrome cells and its potential mechanisms.
Yongxiao ZHANG ; Yinghua LI ; Rui SHI
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):221-227
Objective To investigate the regulatory effect of suppressor of cytokine signaling 1 (SOCS1) on the proliferation and apoptosis of myelodysplastic syndrome (MDS) cells SKM-1 and its potential mechanisms. Methods SOCS1 was overexpressed in SKM-1 cells by transfection with exogenous SOCS1-overexpressing plasmid. Cell viability, cell cycle and apoptosis were analyzed with CCK-8 and flow cytometry assays, respectively. Western blot was used to evaluate the expression of proteins related to the Janus kinase 2/signal transducer and activator of transcription (JAK2/STAT) signaling pathway. Additionally, a NOD/SCID mouse model of MDS was established to record mouse body weight and survival time, assessing the impact of the SOCS1 gene on the growth of SKM-1 cells in vivo. Results Transfection of the SOCS1-overexpressing plasmid significantly increased the mRNA and protein expression levels of SOCS1 in the MDS cell line SKM-1. Overexpression of SOCS1 remarkably reduced cell viability, inhibited cell proliferation, and promoted apoptosis of SKM-1 cells, which also decreased the expression of phosphorylated-JAK2 (p-JAK2), phosphorylated-STAT3 (p-STAT3), and p-STAT5 proteins. Furthermore, in vivo experiment results showed that the body weight and survival time of mice in the SOCS1 overexpression group were significantly better than those in the MDS model group, and the number of CD45+ SKM-1 cells in the peripheral blood was significantly lower than that in the MDS model group, indicating that SOCS1 overexpression could inhibit the activity of SKM-1 cells in mice. Western blot results verified the protein expression level of SOCS1 in the bone marrow of mice in the SOCS1 overexpression group was significantly higher than that in the MDS model group, while the protein expression levels of p-JAK2, p-STAT3, and p-STAT5 were significantly lower than those in the MDS model group. Conclusion SOCS1 inhibits the proliferation of MDS cell line SKM-1 and promotes its apoptosis by negatively regulating the JAK2/STAT signaling pathway, making it a potential therapeutic target for myelodysplastic syndromes.
Animals
;
Humans
;
Mice
;
Apoptosis
;
Body Weight
;
Bone Marrow/metabolism*
;
Janus Kinase 2/metabolism*
;
Mice, Inbred NOD
;
Mice, SCID
;
Myelodysplastic Syndromes/metabolism*
;
Phosphorylation
;
STAT3 Transcription Factor/metabolism*
;
STAT5 Transcription Factor/metabolism*
;
Suppressor of Cytokine Signaling 1 Protein/metabolism*
;
Cell Proliferation
2.Marsdenia tenacissima injection induces the apoptosis of prostate cancer by regulating the AKT/GSK3β/STAT3 signaling axis.
Xiaolan LI ; Songhua HE ; Wei LIANG ; Weiquan ZHANG ; Xin CHEN ; Qiaofeng LI ; Xin YANG ; Yanying LIU ; Dan ZHU ; Li LI ; Buming LIU ; Zhiheng SU ; Jie CHEN ; Hongwei GUO
Chinese Journal of Natural Medicines (English Ed.) 2023;21(2):113-126
Marsdenia tenacissima injection, a standard Marsdenia tenacissima extract (MTE), has been approved as an adjuvant therapeutic agent for various cancers. Our previous study showed that MTE inhibited the proliferation and metastasis of prostate cancer (PCa) cells. However, the underlying mechanisms and active ingredients of MTE against PCa were not completely understood. This study revealed that MTE induced significant decreases in cell viability and clonal growth in PCa cells. In addition, MTE induced the apoptosis of DU145 cells by reducing the mitochondrial membrane potential and increasing the expression of Cleaved Caspase 3/7, Cyt c, and Bax. In vivo, DU145 xenografted NOD-SCID mice treated with MTE showed significantly decreased tumor size. TUNEL staining and Western blot confirmed the pro-apoptotic effects of MTE. Network pharmacology analysis collected 196 ingredients of MTE linked to 655 potential targets, and 709 PCa-associated targets were retrieved, from which 149 overlapped targets were screened out. Pathway enrichment analysis showed that the HIF-1, PI3K-AKT, and ErbB signaling pathways were closely related to tumor apoptosis. Western blot results confirmed that MTE increased the expression of p-AKTSer473 and p-GSK3βSer9, and decreased the expression of p-STAT3Tyr705in vitro and in vivo. A total of 13 compounds in MTE were identified by HPLC-CAD-QTOF-MS/MS and UPLC-QTOF-MS/MS. Molecular docking analysis indicated that six compounds may interact with AKT, GSK3β, and STAT3. In conclusion, MTE induces the endogenous mitochondrial apoptosis of PCa by regulating the AKT/GSK3β/STAT3 signaling axis, resulting in inhibition of PCa growth in vitro and in vivo.
Mice
;
Animals
;
Male
;
Humans
;
Mice, Inbred NOD
;
Mice, SCID
;
Marsdenia
;
Proto-Oncogene Proteins c-akt
;
Glycogen Synthase Kinase 3 beta
;
Molecular Docking Simulation
;
Phosphatidylinositol 3-Kinases
;
Tandem Mass Spectrometry
;
Prostatic Neoplasms
;
Apoptosis
;
STAT3 Transcription Factor
3.Establishment of a Patient-Derived T-Cell Acute Lymphoblastic Leukemia Xenograft Model in Novel Immunodeficient NCG Mice.
Peng-Jun JIANG ; Xing-Bin DAI ; Xiang-Tu KONG ; Zu-Qiong XU ; Hui YU ; Jie PANG ; Wen XIA ; Ju-Hua YU ; Guang-Rong ZHU ; Fang TIAN ; Xue-Jun ZHU
Journal of Experimental Hematology 2023;31(2):311-318
OBJECTIVE:
The leukemia cells from patients with T-cell acute lymphoblastic leukemia (T-ALL) were inoculated into NCG mice to establish a stable human T-ALL leukemia animal model.
METHODS:
Leukemia cells from bone marrow of newly diagnosed T-ALL patients were isolated, and the leukemia cells were inoculated into NCG mice via tail vein. The proportion of hCD45 positive cells in peripheral blood of the mice was detected regularly by flow cytometry, and the infiltration of leukemia cells in bone marrow, liver, spleen and other organs of the mice was detected by pathology and immunohistochemistry. After the first generation mice model was successfully established, the spleen cells from the first generation mice were inoculated into the second generation mice, and after the second generation mice model was successfully established, the spleen cells from the second generation mice were further inoculated into the third generation mice, and the growth of leukemia cells in peripheral blood of the mice in each group was monitored by regular flow cytometry to evaluate the stability of this T-ALL leukemia animal model.
RESULTS:
On the 10th day after inoculation, hCD45+ leukemia cells could be successfully detected in the peripheral blood of the first generation mice, and the proportion of these cells was gradually increased. On average, the mice appeared listless 6 or 7 weeks after inoculation, and a large number of T lymphocyte leukemia cells were found in the peripheral blood and bone marrow smear of the mice. The spleen of the mice was obviously enlarged, and immunohistochemical examination showed that hCD3+ leukemia cells infiltrated into bone marrow, liver and spleen extensively. The second and third generation mice could stably develop leukemia, and the average survival time was 4-5 weeks.
CONCLUSION
Inoculating leukemia cells from bone marrow of patients with T-ALL into NCG mice via tail vein can successfully construct a patient-derived tumor xenografts (PDTX) model.
Humans
;
Animals
;
Mice
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma
;
Heterografts
;
Bone Marrow
;
Disease Models, Animal
;
T-Lymphocytes
;
Mice, SCID
4.Targeted killing of CD133+ lung cancer stem cells using paclitaxel-loaded PLGA-PEG nanoparticles with CD133 aptamers.
Li Ying PANG ; Xiao Long HUANG ; Ling Ling ZHU ; Han Yan XIAO ; Meng Yu LI ; Hui Lin GUAN ; Jie GAO ; Hong JIN
Journal of Southern Medical University 2022;42(1):26-35
OBJECTIVE:
To construct a polylactic acid-glycolic acid-polyethylene glycol (PLGA-PEG) nanocarrier (N-Pac-CD133) coupled with a CD133 nucleic acid aptamer carrying paclitaxel for eliminating lung cancer stem cells (CSCs).
METHODS:
Paclitaxel-loaded N-Pac-CD133 was prepared using the emulsion/solvent evaporation method and characterized. CD133+ lung CSCs were separated by magnetic bead separation and identified for their biological behaviors and gene expression profile. The efficiency of paclitaxel-loaded N-Pac-CD133 for targeted killing of lung cancer cells was assessed in vitro. SCID mice were inoculated with A549 cells and received injections of normal saline, empty nanocarrier linked with CD133 aptamer (N-CD133), paclitaxel, paclitaxel-loaded nanocarrier (N-Pac) or paclitaxel-loaded N-Pac-CD133 (n=8, 5 mg/kg paclitaxel) on days 10, 15 and 20, and the tumor weight and body weight of the mice were measured on day 40.
RESULTS:
Paclitaxel-loaded N-Pac-CD133 showed a particle size of about 100 nm with a high encapsulation efficiency (>80%) and drug loading rate (>8%), and was capable of sustained drug release within 48 h. The CD133+ cell population in lung cancer cells showed the characteristic features of lung CSCs, including faster growth rate (30 days, P=0.001) and high expressions of tumor stem cell markers OV6(P < 0.001), CD133 (P=0.001), OCT3/4 (P=0.002), EpCAM (P=0.04), NANOG (P=0.005) and CD44 (P=0.02). Compared with N-Pac and free paclitaxel, paclitaxel-loaded N-Pac-CD133 showed significantly enhanced targeting ability and cytotoxicity against lung CSCs in vitro (P < 0.001) and significantly reduced the formation of tumor spheres (P < 0.001). In the tumor-bearing mice, paclitaxel-loaded N-Pac-CD133 showed the strongest effects in reducing the tumor mass among all the treatments (P < 0.001).
CONCLUSION
CD133 aptamer can promote targeted delivery of paclitaxel to allow targeted killing of CD133+ lung CSCs. N-Pac-CD133 loaded with paclitaxel may provide an effective treatment for lung cancer by targeting the lung cancer stem cells.
Animals
;
Cell Line, Tumor
;
Drug Carriers
;
Lung
;
Mice
;
Mice, SCID
;
Nanoparticles
;
Neoplasms
;
Neoplastic Stem Cells
;
Paclitaxel/pharmacology*
;
Polyethylene Glycols/pharmacology*
5.Establishment and comparison of three human multiple myeloma cell line transplantation models in mice.
Lan Ting LIU ; Xiao Jing WEI ; Li Xin GONG ; Zhen YU ; Lu Gui QIU ; Mu HAO
Chinese Journal of Hematology 2022;43(5):414-419
Objective: To establish three types of xenotransplantation models using human myeloma cell lines ARP1, MM.1S, and NCI-H929 and to compare the proliferation, tumor load, and biological characteristics of the three types of cells after transplantation. Methods: Suspensions of human myeloma cell lines ARP1, MM.1S, and NCI-H929 were implanted into NOD/SCID mice by subcutaneous injection or tail vein injection. The survival of the mice was observed weekly, and the tumor load was measured. Flow cytometry was used to detect the proportion of CD138(+) cells in tumor tissue or the mouse bone marrow. CD138(+) cells and light chains were detected by immunofluorescence. Light chains in bone marow and peipheral blood were measured by ELISA, and bone disease was assessed by micro-CT. Results: Mice injected with ARP1, MM.1S, and NCI-H929 cells all formed tumors subcutaneously in about 2 weeks. Immunofluorescence detection supported plasma cell tumors. Kappa light chains were detected in the peripheral blood of ARP1 mice on day 20 after tail vein transplantation (8.2±1.0 ng/ml) . After 6 weeks of tail vein transplantation, mice in the ARP1 group showed signs of weight loss, mental depression, and dragging legs, and human CD138(+)CD38(+) cells were detected in the bone marrow (BM) . Furthermore, bortezomib (BTZ) treatment given once the tumor was established significantly reduced the tumor burden[ (5.7±0.2) % vs (21.3±2.1) %, P<0.01]. Human CD138(+)CD38(+) cells were not detected in the BM of the MM.1S or NCI-H929 groups. Conclusion: The results of this study suggest that the mouse models constructed by the three cell lines (ARP1, MM.1S, and NCI-H929) can be used as models for the pathogenesis and clinical research of MM.
Animals
;
Bortezomib/therapeutic use*
;
Cell Line, Tumor
;
Disease Models, Animal
;
Humans
;
Mice
;
Mice, Inbred NOD
;
Mice, SCID
;
Multiple Myeloma/drug therapy*
6.Effects of Tripterine on Adhesion Molecules and Cell Cycle in Human Acute Promyelocytic Leukemia Model Mice.
Deng-Peng SONG ; Sheng-Ying WU
Journal of Experimental Hematology 2021;29(1):72-76
OBJECTIVE:
To observe the effects of tripterine on adhesion molecules and cell biological characteristics in mice with acute promyelocytic leukemia (APL) tumor.
METHODS:
Eighteen SCID beige mice were caudal vein injected with NB4 cell lines (5×10
RESULTS:
The neutrophil decrased and promyelocytes, NB4 cells, B lymphocytes and white blood cells increased in tumor-bearing group as compared with control group (P<0.05), and the expressions of serum P-selectin (P-selectin), soluble vascular adhesion molecule-1 (soluble vascular adhesion molecule-1, sVCAM-1) and soluble intercellular adhesion molecule-1 (soluble intercellular adhesion molecule-1, sICAM-1) all increased (P<0.05). The cell cycle showed that the proportion of G
CONCLUSION
Tripterine may not only inhibit the expression of sVCAM-1 and sICAM-1 proteins in APL tumor-bearing mice and reduce the adhesion of tumor cells, but also block tumor cells at G
Animals
;
Cell Cycle
;
Cell Division
;
Humans
;
Intercellular Adhesion Molecule-1
;
Leukemia, Promyelocytic, Acute/drug therapy*
;
Mice
;
Mice, SCID
;
Triterpenes
;
Vascular Cell Adhesion Molecule-1
7.The Establishment and Identification of Acute Myeloid Leukemia NOD-SCID-IL2rg
Wei-Ya ZHANG ; Gao-Chun ZENG ; Xiao-Mei CHEN ; Su-Xia GENG ; Yu-Lian WANG ; Qiong LUO ; Liu-Ping LUO ; Pei-Long LAI ; Jian-Yu WENG ; Xin DU
Journal of Experimental Hematology 2021;29(5):1429-1435
OBJECTIVE:
To establish the in vivo traceable acute myeloid leukemia mice model with Luciferase-Expressing KG1a Cells.
METHODS:
KG1a cells with stable luciferase gene expression (called as KG1a-Luc cells) were constructed by lentivirus transfection, then sifted out by puromycin. Eighteen male NOD-SCID-IL2rg
RESULTS:
KG1a cells expressing luciferase stably were successfully obtained. The tumor luminescence wildly spread at day 17 captured by in vivo imaging. The KG1a-Luc tumor cells could be detected in the peripheral blood of the mice, with the average percentage of (16.27±6.66)%. The morphology and pathology result showed that KG1a-Luc cells infiltrate was detected in bone marrow, spleens and livers. The survival time of the KG1a-Luc mice was notably shorter as compared with those in the control group, the median survival time was 30.5 days (95%CI: 0.008-0.260).
CONCLUSION
The acute myeloid leukemia NOD-SCID-IL2rg
Animals
;
Disease Models, Animal
;
Interleukin Receptor Common gamma Subunit
;
Leukemia, Myeloid, Acute
;
Luciferases/genetics*
;
Male
;
Mice
;
Mice, Inbred NOD
;
Mice, SCID
8.Cdc37 Expression in Multiple Myeloma and Its Role in Cell Proliferation.
Mei-Rong ZANG ; Lan-Ting LIU ; Shu-Hui DENG ; Lu-Gui QIU
Journal of Experimental Hematology 2021;29(5):1522-1527
OBJECTIVE:
To investigate the expression of cell division cycle protein 37 (Cdc37) in multiple myeloma (MM) and its effect on MM cell proliferation.
METHODS:
The expression of Cdc37 mRNA in CD138
RESULTS:
Cdc37 was highly expressed in newly diagnosed CD138
CONCLUSION
Cdc37 is highly expressed in newly diagnosed MM patients. Inhibition of Cdc37 results in decreased proliferation activity and G
Animals
;
Apoptosis
;
Cell Cycle Proteins
;
Cell Proliferation
;
Chaperonins
;
Humans
;
Mice
;
Mice, Inbred NOD
;
Mice, SCID
;
Multiple Myeloma
9.Ponatinib inhibits growth of patient-derived xenograft of cholangiocarcinoma expressing FGFR2-CCDC6 fusion protein in nude mice.
Tianyu WU ; Xiaoqing JIANG ; Bin XU ; Yu WANG
Journal of Southern Medical University 2020;40(10):1448-1456
OBJECTIVE:
To investigate the antitumor effect of ponatinib on the growth of cholangiocarcinoma xenograft derived from a clinical patient in a mouse model expressing FGFR2-CCDC6 fusion protein.
METHODS:
Lung metastatic tumor tissue was collected from a patient with advanced intrahepatic cholangiocarcinoma and implanted subcutaneously a NOD/SCID/ Il2rg-knockout (NSG) mouse. The tumor tissues were harvested and transplanted in nude mice to establish mouse models bearing patient-derived xenograft (PDX) of cholangiocarcinoma expressing FGFR2-CCDC6 fusion protein. The PDX mouse models were divided into 4 groups for treatment with citrate buffer (control group), intragastric administration of 20 mg/kg ponatinib dissolved in citrate buffer (ponatinib group), weekly intraperitoneal injections of 50 mg/kg gemcitabine and 2.5 mg/ kg cisplatin (gemcitabine group), or ponatinib combined with gemcitabine and cisplatin at the same doses (10 mice in each group, and 9 mice were evaluated in ponatinib group). The expressions of p-FGFR, p-FRS2, p-AKT, p-ERK, CD31, and Ki-67 in the xenografts were evaluated with immunohistochemistry, and cell apoptosis was analyzed with cleaved caspase-3 (CC3) staining and TUNEL staining. Western blotting was used to detect the expressions of FGFR2, p-FGFR, AKT, p-AKT, ERK, p-ERK, FRS2 and p-FRS2 in the tumor tissues.
RESULTS:
Compared with those in the control group, the mice in ponatinib group showed a significantly reduced tumor volume (
CONCLUSIONS
Ponatinib can regulate FGFR signaling to inhibit the proliferation and induce apoptosis of tumor cells in mice bearing patient-derived cholangiocarcinoma xenograft with FGFR2 fusion. FGFR inhibitor can serve as a treatment option for patients with cholangiocarcinoma with FGFR2 fusion.
Animals
;
Bile Duct Neoplasms/genetics*
;
Cell Line, Tumor
;
Cell Proliferation
;
Cholangiocarcinoma/genetics*
;
Cytoskeletal Proteins
;
Heterografts
;
Humans
;
Imidazoles
;
Mice
;
Mice, Inbred NOD
;
Mice, Nude
;
Mice, SCID
;
Pyridazines
;
Receptor, Fibroblast Growth Factor, Type 2
;
Xenograft Model Antitumor Assays
10.Value of Thermal Tomography in Early Diagnosis of Breast Cancer in Animal Models.
Xiao-Wei XUE ; Jun-Lai LI ; Shao-Wei XUE ; Cheng ZHANG
Acta Academiae Medicinae Sinicae 2020;42(2):236-241
To obtain ultrasound and thermal tomography images of breast cancer during its growth and to assess the value of thermal tomography in detecting breast cancer. Breast cancer models were established with NOD/SCID mice and SD rats. These animal models were examined by thermal tomography,plain ultrasound,and contrast-enhanced ultrasound. Tumor tissues were stained with CD34 to explore the relationship between tumor heat production and vascular pathology. Thermal tomography detected breast cancer 2-4 days earlier than ultrasound. The expression of CD34 in tumor tissues was increased,along with thickened,increased,and irregular blood vessels. Thermal tomography can detect early breast cancer and is a promising tool for screening breast cancer.
Animals
;
Breast Neoplasms
;
diagnostic imaging
;
Early Diagnosis
;
Mice
;
Mice, Inbred NOD
;
Mice, SCID
;
Neoplasms, Experimental
;
diagnostic imaging
;
Rats
;
Rats, Sprague-Dawley
;
Tomography
;
Ultrasonography, Mammary

Result Analysis
Print
Save
E-mail