1.Evolution-guided design of mini-protein for high-contrast in vivo imaging.
Nongyu HUANG ; Yang CAO ; Guangjun XIONG ; Suwen CHEN ; Juan CHENG ; Yifan ZHOU ; Chengxin ZHANG ; Xiaoqiong WEI ; Wenling WU ; Yawen HU ; Pei ZHOU ; Guolin LI ; Fulei ZHAO ; Fanlian ZENG ; Xiaoyan WANG ; Jiadong YU ; Chengcheng YUE ; Xinai CUI ; Kaijun CUI ; Huawei CAI ; Yuquan WEI ; Yang ZHANG ; Jiong LI
Acta Pharmaceutica Sinica B 2025;15(10):5327-5345
Traditional development of small protein scaffolds has relied on display technologies and mutation-based engineering, which limit sequence and functional diversity, thereby constraining their therapeutic and application potential. Protein design tools have significantly advanced the creation of novel protein sequences, structures, and functions. However, further improvements in design strategies are still needed to more efficiently optimize the functional performance of protein-based drugs and enhance their druggability. Here, we extended an evolution-based design protocol to create a novel minibinder, BindHer, against the human epidermal growth factor receptor 2 (HER2). It not only exhibits super stability and binding selectivity but also demonstrates remarkable properties in tissue specificity. Radiolabeling experiments with 99mTc, 68Ga, and 18F revealed that BindHer efficiently targets tumors in HER2-positive breast cancer mouse models, with minimal nonspecific liver absorption, outperforming scaffolds designed through traditional engineering. These findings highlight a new rational approach to automated protein design, offering significant potential for large-scale applications in therapeutic mini-protein development.
2.Silencing DDX17 inhibits proliferation and migration of pulmonary arterial smooth muscle cells in vitro by decreasing mTORC1 activity.
Xiangxiang DENG ; Jia WANG ; Mi XIONG ; Ting WANG ; Yongjian YANG ; De LI ; Xiongshan SUN
Journal of Southern Medical University 2025;45(11):2475-2482
OBJECTIVES:
To investigate the mechanism of DDX17 for regulating proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) during the development of pulmonary hypertension (PH).
METHODS:
In murine PASMCs cultured under normoxic or hypoxic conditions, the effects of transfection with si-Ddx17 and insulin treatment, alone or in combination, on cell proliferation and migration were evaluated using Ki-67 immunofluorescence staining, scratch assay and Transwell assay. Western Blotting was performed to detect the changes in protein expression levels of DDX17, 4EBP1, S6, p-4EBP1, and p-S6. In a mouse model of PH induced by intraperitoneal injection of monocrotaline (MCT), the changes in pulmonary vasculature were examined using HE staining following tail vein injection of AD-Ddx17i.
RESULTS:
The PASMCs in hypoxic culture exhibited significantly enhanced cell proliferation and migration and protein expressions of p-4EBP1 and p-S6, and these changes were obviously reversed by transfection with si-Ddx17. Treatment with insulin significantly attenuated the effect of si-Ddx17 against hypoxic exposure-induced changes in PASMCs. In the mouse model of MCT-induced PH, transfection with AD-Ddx17i obviously alleviated pulmonary vascular stenosis and intimal hyperplasia.
CONCLUSIONS
The expression of DDX17 is elevated in hypoxia-induced PASMCs and PH mice, and silencing DDX17 significantly inhibits PASMC proliferation and migration in vitro and pulmonary vascular remodeling in PH mice by reducing mTORC1 activity.
Animals
;
Cell Proliferation
;
Cell Movement
;
DEAD-box RNA Helicases/metabolism*
;
Myocytes, Smooth Muscle/metabolism*
;
Mice
;
Pulmonary Artery/cytology*
;
Hypertension, Pulmonary/metabolism*
;
Mechanistic Target of Rapamycin Complex 1
;
Cells, Cultured
;
Muscle, Smooth, Vascular/cytology*
3.Identification of a Fusobacterial RNA-binding protein involved in host small RNA-mediated growth inhibition.
Pu-Ting DONG ; Mengdi YANG ; Jie HU ; Lujia CEN ; Peng ZHOU ; Difei XU ; Peng XIONG ; Jiahe LI ; Xuesong HE
International Journal of Oral Science 2025;17(1):48-48
Host-derived small RNAs are emerging as critical regulators in the dynamic interactions between host tissues and the microbiome, with implications for microbial pathogenesis and host defense. Among these, transfer RNA-derived small RNAs (tsRNAs) have garnered attention for their roles in modulating microbial behavior. However, the bacterial factors mediating tsRNA interaction and functionality remain poorly understood. In this study, using RNA affinity pull-down assay in combination with mass spectrometry, we identified a putative membrane-bound protein, annotated as P-type ATPase transporter (PtaT) in Fusobacterium nucleatum (Fn), which binds Fn-targeting tsRNAs in a sequence-specific manner. Through targeted mutagenesis and phenotypic characterization, we showed that in both the Fn type strain and a clinical tumor isolate, deletion of ptaT led to reduced tsRNA intake and enhanced resistance to tsRNA-induced growth inhibition. Global RNA sequencing and label-free Raman spectroscopy revealed the phenotypic differences between Fn wild type and PtaT-deficient mutant, highlighting the functional significance of PtaT in purine and pyrimidine metabolism. Furthermore, AlphaFold 3 prediction provides evidence supporting the specific binding between PtaT and Fn-targeting tsRNA. By uncovering the first RNA-binding protein in Fn implicated in growth modulation through interactions with host-derived small RNAs (sRNAs), our study offers new insights into sRNA-mediated host-pathogen interplay within the context of microbiome-host interactions.
Fusobacterium nucleatum/growth & development*
;
RNA-Binding Proteins/genetics*
;
Bacterial Proteins/genetics*
;
RNA, Bacterial/metabolism*
;
Humans
;
RNA, Transfer/metabolism*
5.Exploration of New Susceptible Genes associated with Non-Alcoholic Fatty Liver Disease among Children with Obesity Using Whole Exome Sequencing.
Xiong Feng PAN ; Cai Lian WEI ; Jia You LUO ; Jun Xia YAN ; Xiang XIAO ; Jie WANG ; Yan ZHONG ; Mi Yang LUO
Biomedical and Environmental Sciences 2025;38(6):727-739
OBJECTIVE:
This study aimed to evaluate the association between susceptibility genes and non-alcoholic fatty liver disease (NAFLD) in children with obesity.
METHODS:
We conducted a two-step case-control study. Ninety-three participants were subjected to whole-exome sequencing (exploratory set). Differential genes identified in the small sample were validated in 1,022 participants using multiplex polymerase chain reaction and high-throughput sequencing (validation set).
RESULTS:
In the exploratory set, 14 genes from the NAFLD-associated pathways were identified. In the validation set, after adjusting for sex, age, and body mass index, ECI2 rs2326408 (dominant model: OR = 1.33, 95% CI: 1.02-1.72; additive model: OR = 1.22, 95% CI: 1.01-1.47), C6orf201 rs659305 (dominant model: OR = 1.30, 95% CI: 1.01-1.69; additive model: OR = 1.21, 95% CI: 1.00-1.45), CALML5 rs10904516 (pre-ad dominant model: OR = 1.36, 95% CI: 1.01-1.83; adjusted dominant model: OR = 1.40, 95% CI: 1.03-1.91; and pre-ad additive model: OR = 1.26, 95% CI: 1.04-1.66) polymorphisms were significantly associated with NAFLD in children with obesity ( P < 0.05). Interaction analysis revealed that the gene-gene interaction model of CALML5 rs10904516, COX11 rs17209882, and SCD5 rs3733228 was optional ( P < 0.05), demonstrating a negative interaction between the three genes.
CONCLUSION
In the Chinese population, the CALML5 rs10904516, C6orf201 rs659305, and ECI2 rs2326408 variants could be genetic markers for NAFLD susceptibility.
Humans
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Child
;
Male
;
Female
;
Genetic Predisposition to Disease
;
Case-Control Studies
;
Exome Sequencing
;
Adolescent
;
Polymorphism, Single Nucleotide
;
Obesity/complications*
;
Pediatric Obesity/complications*
;
China
6.Gingipain from Porphyromonas gingivalis causes insulin resistance by degrading insulin receptors through direct proteolytic effects
Liu FEN ; Zhu BOFENG ; An YING ; Zhou ZHIFEI ; Xiong PEIYING ; Li XUAN ; Mi YANG ; He TONGQIANG ; Chen FAMING ; Wu BULING
International Journal of Oral Science 2024;16(3):539-552
Periodontitis is a critical risk factor for the occurrence and development of diabetes.Porphyromonas gingivalis may participate in insulin resistance(IR)caused by periodontal inflammation,but the functional role and specific mechanisms of P.gingivalis in IR remain unclear.In the present study,clinical samples were analysed to determine the statistical correlation between P.gingivalis and IR occurrence.Through culturing of hepatocytes,myocytes,and adipocytes,and feeding mice P.gingivalis orally,the functional correlation between P.gingivalis and IR occurrence was further studied both in vitro and in vivo.Clinical data suggested that the amount of P.gingivalis isolated was correlated with the Homeostatic Model Assessment for IR score.In vitro studies suggested that coculture with P.gingivalis decreased glucose uptake and insulin receptor(INSR)protein expression in hepatocytes,myocytes,and adipocytes.Mice fed P.gingivalis tended to undergo IR.P.gingivalis was detectable in the liver,skeletal muscle,and adipose tissue of experimental mice.The distribution sites of gingipain coincided with the downregulation of INSR.Gingipain proteolysed the functional insulin-binding region of INSR.Coculture with P.gingivalis significantly decreased the INSR-insulin binding ability.Knocking out gingipain from P.gingivalis alleviated the negative effects of P.gingivalis on IR in vivo.Taken together,these findings indicate that distantly migrated P.gingivalis may directly proteolytically degrade INSR through gingipain,thereby leading to IR.The results provide a new strategy for preventing diabetes by targeting periodontal pathogens and provide new ideas for exploring novel mechanisms by which periodontal inflammation affects the systemic metabolic state.
7.Analysis of Human Brain Bank samples from Hebei Medical University
Juan DU ; Shi-Xiong MI ; Yu-Chuan JIN ; Qian YANG ; Min MA ; Xue-Ru ZHAO ; Feng-Cang LIU ; Chang-Yi ZHAO ; Zhan-Chi ZHANG ; Ping FAN ; Hui-Xian CUI
Acta Anatomica Sinica 2024;55(4):437-444
Objective To understand the current situation of human brain donation in Hebei Province by analyzing the basic information of Human Brain Bank samples of Hebei Medical University in order to provide basic data support for subsequent scientific research.Methods The samples collected from the Human Brain Bank of Hebei Medical University were analyzed(from December 2019 to February 2024),including gender,age,cause of death,as well as quality control data such as postmortem delay time,pH value of cerebrospinal fluid and and RNA integrity number and result of neuropathological diagnosis.Results Until February 2024,30 human brain samples were collected and stored in the Human Brain Bank of Hebei Medical University,with a male to female ratio of 9∶1.Donors over 70 years old accounted for 53%.Cardiovascular and cerebrovascular diseases(36.67%)and nervous system diseases(23.33%)accounted for a high proportion of the death causes.The location of brain tissue donors in Shijiazhuang accounted for 90%donations,and the others were from outside the city.The postmortem delay time was relatively short,90%within 12 hours and 10%more than 12 hours.69.23%of the brain samples had RNA integrity values greater than 6.Cerebrospinal fluid pH values ranged from 5.8 to 7.5,with an average value of 6.60±0.45.Brain weights ranged from 906-1496 g,with an average value of(1210.78±197.84)g.Three apolipoprotein E(APOE)alleles were detected including five genotypes(ε2/ε3,ε2/ε4,ε3/ε3,ε3/ε4,ε4/ε4).Eleven staining methods related to neuropathological diagnosis had been established and used.A total of 12 cases were diagnosed as neurodegenerative diseases(including Alzheimer's disease,Parkinson's disease,multiple system atrophy,corticobasal degeneration and progressive supranuclear palsy,etc.),accounting for 40%donated brains.The comorbidity rate of samples over 80 years old was 100%.Conclusion The summary and analyses of the data of brain donors in the Human Brain Bank of Hebei Medical University can reflect the current situation of the construction and operation of the brain bank in Hebei Province,and it can also be more targeted to understand and identify potential donors.Our information can provide reference for the construction of brain bank and provides more reliable materials and data support for scientific research.
8.Genotyping of nucleocapsid protein gene of HCV in HIVHCV co-infected patients in Kunming in 2019
ZHU Yan-tao ; LIU Jun-yi ; ZHANG Mi ; ZHANG Nian ; LI Jian-jian ; YANG Bi-hun ; KANG Li-juan ; LI Xiong-jun ; LIU Jia-fa ; WANG Jia-li
China Tropical Medicine 2023;23(1):16-
Abstract: Objective To investigate the distribution characteristics of HCV genotypes and subtypes in patients with HIV (human immunodeficiency virus, HIV)/HCV co-infection in Kunming based on the nucleocapsid protein gene sequence of HCV (hepatitis C virus). Methods Serum was collected from HIV/HCV co-infected patients with household registration in 14 county-level cities, districts and counties under the jurisdiction of Kunming, who admitted to Yunnan Provincial Infectious Disease Hospital from March to August 2019. The viral RNA was extracted from the serum, reverse transcribed to synthesize cDNA, and the HCV nucleocapsid protein gene-specific primers were used for nested PCR amplification. The positive amplification products were sequenced, bioinformatics software such as DNAstar and MEGAX were used for sequence analysis. Results A total of 64 samples from co-infected patients with clinical diagnosis of suspected HIV/HCV were collected and amplified by HCV nucleocapsid protein gene-specific primers, of which 17 samples were amplified positively. The results of sequence analysis showed that the sequences of 9 cases were located in the same evolutionary branch as the HCV 3b subtype sequence, and the nucleotide homology was 93.3%-95.2%; the sequences of 5 cases were located in the same evolutionary branch as the HCV 1b subtype sequence, and the nucleotide homology was 96.8%-97.6%; the sequence of one case and the subtype sequence of HCV 3a gene were located in the same evolutionary branch, and the nucleotide homology was 95.2%; the sequence of one case and HCV 6n gene subtype sequence were located in the same evolutionary branch, and the nucleotide homology was 97.9%; One case was located in the same evolutionary branch as the HCV 6u gene subtype sequence, and the nucleotide homology was 98.4%. Conclusions HCV 1b, HCV 3a, HCV 3b, HCV 6n and HCV 6u genotypes or subtypes of HCV are prevalent in Kunming, and HCV 3b is the most prevalent genotype.
9.Expert consensus on diagnosis, prevention and treatment of perioperative lower extremity vein thrombosis in orthopedic trauma patients (2022 edition)
Wu ZHOU ; Faqi CAO ; Ruiyin ZENG ; Baoguo JIANG ; Peifu TANG ; Xinbao WU ; Bin YU ; Zhiyong HOU ; Jian LI ; Jiacan SU ; Guodong LIU ; Baoqing YU ; Zhi YUAN ; Jiangdong NI ; Yanxi CHEN ; Dehao FU ; Peijian TONG ; Dongliang WANG ; Dianying ZHANG ; Peng ZHANG ; Yunfei ZHANG ; Feng NIU ; Lei YANG ; Qiang YANG ; Zhongmin SHI ; Qiang ZHOU ; Junwen WANG ; Yong WANG ; Chengjian HE ; Biao CHE ; Meng ZHAO ; Ping XIA ; Liming XIONG ; Liehu CAO ; Xiao CHEN ; Hui LI ; Yun SUN ; Liangcong HU ; Yan HU ; Mengfei LIU ; Bobin MI ; Yuan XIONG ; Hang XUE ; Ze LIN ; Yingze ZHANG ; Yu HU ; Guohui LIU
Chinese Journal of Trauma 2022;38(1):23-31
Lower extremity deep vein thrombosis (DVT) is one of the main complications in patients with traumatic fractures, and for severe patients, the DVT can even affect arterial blood supply, resulting in insufficient limb blood supply. If the thrombus breaks off, pulmonary embolism may occur, with a high mortality. The treatment and rehabilitation strategies of thrombosis in patients with lower extremity fractures have its particularity. DVT in traumatic fractures patients has attracted extensive attention and been largely studied, and the measures for prevention and treatment of DVT are constantly developing. In recent years, a series of thrombosis prevention and treatment guidelines have been updated at home and abroad, but there are still many doubts about the prevention and treatment of DVT in patients with different traumatic fractures. Accordingly, on the basis of summarizing the latest evidence-based medical evidence at home and abroad and the clinical experience of the majority of experts, the authors summarize the clinical treatment and prevention protocols for DVT in patients with traumatic fractures, and make this consensus on the examination and assessment, treatment, prevention and preventive measures for DVT in patients with different fractures so as to provide a practicable approach suitable for China ′s national conditions and improve the prognosis and the life quality of patients.
10.Histones of Neutrophil Extracellular Traps Induce CD11b Expression in Brain Pericytes Via Dectin-1 after Traumatic Brain Injury.
Yang-Wuyue LIU ; Jingyu ZHANG ; Wanda BI ; Mi ZHOU ; Jiabo LI ; Tiantian XIONG ; Nan YANG ; Li ZHAO ; Xing CHEN ; Yuanguo ZHOU ; Wenhui HE ; Teng YANG ; Hao WANG ; Lunshan XU ; Shuang-Shuang DAI
Neuroscience Bulletin 2022;38(10):1199-1214
The brain pericyte is a unique and indispensable part of the blood-brain barrier (BBB), and contributes to several pathological processes in traumatic brain injury (TBI). However, the cellular and molecular mechanisms by which pericytes are regulated in the damaged brain are largely unknown. Here, we show that the formation of neutrophil extracellular traps (NETs) induces the appearance of CD11b+ pericytes after TBI. These CD11b+ pericyte subsets are characterized by increased permeability and pro-inflammatory profiles compared to CD11b- pericytes. Moreover, histones from NETs by Dectin-1 facilitate CD11b induction in brain pericytes in PKC-c-Jun dependent manner, resulting in neuroinflammation and BBB dysfunction after TBI. These data indicate that neutrophil-NET-pericyte and histone-Dectin-1-CD11b are possible mechanisms for the activation and dysfunction of pericytes. Targeting NETs formation and Dectin-1 are promising means of treating TBI.
Blood-Brain Barrier/metabolism*
;
Brain/pathology*
;
Brain Injuries, Traumatic/metabolism*
;
Extracellular Traps/metabolism*
;
Histones
;
Humans
;
Lectins, C-Type
;
Pericytes/pathology*

Result Analysis
Print
Save
E-mail