1.Minocycline Susceptibility of Carbapenem-Resistant Acinetobacter baumannii Blood Isolates from a Single Center in Korea: Role of tetB in Resistance
Taeeun KIM ; Eun Hee JEON ; Yoon-Kyoung HONG ; Jiwon JUNG ; Min Jae KIM ; Heungsup SUNG ; Mi-Na KIM ; Sung-Han KIM ; Sang-Ho CHOI ; Sang-Oh LEE ; Yang Soo KIM ; Yong Pil CHONG
Infection and Chemotherapy 2025;57(1):111-118
Background:
Carbapenem-resistant Acinetobacter baumannii (CRAB) represents a devastating and growing global threat, calling for new antibiotic treatments. In Korea, the challenge of treating CRAB is compounded by high nosocomial acquisition rates and limited availability of novel antibiotics. Minocycline, a semisynthetic tetracycline derivative, has been proposed as a therapeutic option for CRAB infections. Nonsusceptibility to minocycline may occur through the efflux pump, TetB. The prevalence of tetB in A. baumannii has increased, along with higher minocycline minimum inhibitory concentrations (MICs). We aimed to evaluate minocycline susceptibility rates in clinical strains of CRAB, and the association between tetB carriage and minocycline susceptibility across different genotypes.
Materials and Methods:
Representative CRAB blood isolates were collected from Asan Medical Center, Seoul.Minocycline susceptibility was assessed using the Clinical and Laboratory Standards Institute (CLSI) breakpoint (≤4 mg/L) and the proposed pharmacokinetics (PK)/pharmacodynamics (PD) breakpoint (≤1 mg/L). Tigecycline was used as a comparator, and its susceptibility breakpoint for Enterobacterales defined by EUCAST was applied (≤0.5 mg/L).The presence of tetB was detected by PCR, and multilocus sequence typing (MLST) was performed using seven housekeeping genes.
Results:
Of the 160 CRAB blood isolates, 83.8% were susceptible to minocycline by the CLSI criteria, and 50.6% were PK-PD susceptible by the PK-PD criteria. The minocycline minimum inhibitory concentration (MIC)50 /MIC90 was 1/8 mg/L. tetB was present in 49% of isolates and was associated with a higher minocycline MIC (MIC50/90 2/8 mg/L vs. 1/2 mg/L). No clear correlation was observed between tetB positivity and tigecycline MIC. Nine MLSTs were identified, with significant differences in tetB carriage rates between the major sequence types. Notably, ST191, associated with non-tetB carriage and greater susceptibility to minocycline, declined over the study period (P=0.004), while ST451, associated with tetB carriage, increased.
Conclusion
tetB was present in 49% of CRAB isolates and was associated with higher MICs and non-susceptibility by both CLSI and PK-PD criteria. However, absence of tetB was not a reliable predictor of minocycline PK-PD susceptibility. Additionally, shifts over time towards genotypes with reduced minocycline susceptibility were observed. Further research is needed to correlate these findings with clinical outcomes and identify additional resistance mechanisms.
2.Minocycline Susceptibility of Carbapenem-Resistant Acinetobacter baumannii Blood Isolates from a Single Center in Korea: Role of tetB in Resistance
Taeeun KIM ; Eun Hee JEON ; Yoon-Kyoung HONG ; Jiwon JUNG ; Min Jae KIM ; Heungsup SUNG ; Mi-Na KIM ; Sung-Han KIM ; Sang-Ho CHOI ; Sang-Oh LEE ; Yang Soo KIM ; Yong Pil CHONG
Infection and Chemotherapy 2025;57(1):111-118
Background:
Carbapenem-resistant Acinetobacter baumannii (CRAB) represents a devastating and growing global threat, calling for new antibiotic treatments. In Korea, the challenge of treating CRAB is compounded by high nosocomial acquisition rates and limited availability of novel antibiotics. Minocycline, a semisynthetic tetracycline derivative, has been proposed as a therapeutic option for CRAB infections. Nonsusceptibility to minocycline may occur through the efflux pump, TetB. The prevalence of tetB in A. baumannii has increased, along with higher minocycline minimum inhibitory concentrations (MICs). We aimed to evaluate minocycline susceptibility rates in clinical strains of CRAB, and the association between tetB carriage and minocycline susceptibility across different genotypes.
Materials and Methods:
Representative CRAB blood isolates were collected from Asan Medical Center, Seoul.Minocycline susceptibility was assessed using the Clinical and Laboratory Standards Institute (CLSI) breakpoint (≤4 mg/L) and the proposed pharmacokinetics (PK)/pharmacodynamics (PD) breakpoint (≤1 mg/L). Tigecycline was used as a comparator, and its susceptibility breakpoint for Enterobacterales defined by EUCAST was applied (≤0.5 mg/L).The presence of tetB was detected by PCR, and multilocus sequence typing (MLST) was performed using seven housekeeping genes.
Results:
Of the 160 CRAB blood isolates, 83.8% were susceptible to minocycline by the CLSI criteria, and 50.6% were PK-PD susceptible by the PK-PD criteria. The minocycline minimum inhibitory concentration (MIC)50 /MIC90 was 1/8 mg/L. tetB was present in 49% of isolates and was associated with a higher minocycline MIC (MIC50/90 2/8 mg/L vs. 1/2 mg/L). No clear correlation was observed between tetB positivity and tigecycline MIC. Nine MLSTs were identified, with significant differences in tetB carriage rates between the major sequence types. Notably, ST191, associated with non-tetB carriage and greater susceptibility to minocycline, declined over the study period (P=0.004), while ST451, associated with tetB carriage, increased.
Conclusion
tetB was present in 49% of CRAB isolates and was associated with higher MICs and non-susceptibility by both CLSI and PK-PD criteria. However, absence of tetB was not a reliable predictor of minocycline PK-PD susceptibility. Additionally, shifts over time towards genotypes with reduced minocycline susceptibility were observed. Further research is needed to correlate these findings with clinical outcomes and identify additional resistance mechanisms.
3.Minocycline Susceptibility of Carbapenem-Resistant Acinetobacter baumannii Blood Isolates from a Single Center in Korea: Role of tetB in Resistance
Taeeun KIM ; Eun Hee JEON ; Yoon-Kyoung HONG ; Jiwon JUNG ; Min Jae KIM ; Heungsup SUNG ; Mi-Na KIM ; Sung-Han KIM ; Sang-Ho CHOI ; Sang-Oh LEE ; Yang Soo KIM ; Yong Pil CHONG
Infection and Chemotherapy 2025;57(1):111-118
Background:
Carbapenem-resistant Acinetobacter baumannii (CRAB) represents a devastating and growing global threat, calling for new antibiotic treatments. In Korea, the challenge of treating CRAB is compounded by high nosocomial acquisition rates and limited availability of novel antibiotics. Minocycline, a semisynthetic tetracycline derivative, has been proposed as a therapeutic option for CRAB infections. Nonsusceptibility to minocycline may occur through the efflux pump, TetB. The prevalence of tetB in A. baumannii has increased, along with higher minocycline minimum inhibitory concentrations (MICs). We aimed to evaluate minocycline susceptibility rates in clinical strains of CRAB, and the association between tetB carriage and minocycline susceptibility across different genotypes.
Materials and Methods:
Representative CRAB blood isolates were collected from Asan Medical Center, Seoul.Minocycline susceptibility was assessed using the Clinical and Laboratory Standards Institute (CLSI) breakpoint (≤4 mg/L) and the proposed pharmacokinetics (PK)/pharmacodynamics (PD) breakpoint (≤1 mg/L). Tigecycline was used as a comparator, and its susceptibility breakpoint for Enterobacterales defined by EUCAST was applied (≤0.5 mg/L).The presence of tetB was detected by PCR, and multilocus sequence typing (MLST) was performed using seven housekeeping genes.
Results:
Of the 160 CRAB blood isolates, 83.8% were susceptible to minocycline by the CLSI criteria, and 50.6% were PK-PD susceptible by the PK-PD criteria. The minocycline minimum inhibitory concentration (MIC)50 /MIC90 was 1/8 mg/L. tetB was present in 49% of isolates and was associated with a higher minocycline MIC (MIC50/90 2/8 mg/L vs. 1/2 mg/L). No clear correlation was observed between tetB positivity and tigecycline MIC. Nine MLSTs were identified, with significant differences in tetB carriage rates between the major sequence types. Notably, ST191, associated with non-tetB carriage and greater susceptibility to minocycline, declined over the study period (P=0.004), while ST451, associated with tetB carriage, increased.
Conclusion
tetB was present in 49% of CRAB isolates and was associated with higher MICs and non-susceptibility by both CLSI and PK-PD criteria. However, absence of tetB was not a reliable predictor of minocycline PK-PD susceptibility. Additionally, shifts over time towards genotypes with reduced minocycline susceptibility were observed. Further research is needed to correlate these findings with clinical outcomes and identify additional resistance mechanisms.
4.Thermal sensitization of acupoints in patients with knee osteoarthritis: A cross-sectional case-control study.
Jian-Feng TU ; Xue-Zhou WANG ; Shi-Yan YAN ; Yi-Ran WANG ; Jing-Wen YANG ; Guang-Xia SHI ; Wen-Zheng ZHANG ; Li-Na JIN ; Li-Sha YANG ; Dong-Hua LIU ; Li-Qiong WANG ; Bao-Hong MI
Journal of Integrative Medicine 2025;23(3):289-296
OBJECTIVE:
Varied acupoint selections represent a potential cause of the uncertainty surrounding the efficacy of acupuncture for knee osteoarthritis (OA). Skin temperature, a guiding factor for acupoint selection, may help to address this issue. This study explored thermal sensitization of acupoints used for the treatment of knee OA.
METHODS:
This cross-sectional case-control study enrolled cases aged 45-75 years with symptomatic knee OA and age- and gender-matched non-knee OA controls in a 1:1 ratio. All participants underwent infrared thermographic imaging. The primary outcome was the relative skin temperature of acupoint (STA), and the secondary outcome was the absolute STA of 11 acupoints. The Z test was used to compare the relative and absolute STAs between the groups. Principal component analysis was used to extract the common factors (CFs, acupoint cluster) in the STAs. A general linear model was used to identify factors affecting the STA in the knee OA cases. For the group comparisons of relative STA, P < 0.0045 (adjusted for 11 acupoints through Bonferroni correction) was considered to indicate statistical significance. For other analyses, P < 0.05 was used as the threshold for statistical significance.
RESULTS:
The analysis included 308 participants, consisting of 151 cases (mean age: [64.58 ± 6.67] years; male: 25.83%; mean body mass index: [25.70 ± 3.16] kg/m2) and 157 controls (mean age: [63.37 ± 5.96] years; male: 26.11%; mean body mass index: [24.47 ± 2.84] kg/m2). The relative STAs of ST34 (P = 0.0001), EX-LE2 (P < 0.0001), EX-LE5 (P = 0.0006), SP10 (P < 0.0001), BL40 (P = 0.0012) and GB39 (P = 0.0037) were higher in the knee OA group. No difference was found in the STAs of ST35, ST36, SP9, GB33 and GB34. Four CFs were identified for relative STA in both groups. The acupoints within each CF were consistent between the groups. The mean values of the relative STAs across each CF were higher in the knee OA group. In the knee OA cases, no factors were observed to affect the relative STA, while age and gender were found to affect the absolute STA.
CONCLUSION
Among patients with knee OA, thermal sensitization occurs in the acupoints of the lower extremity, exhibiting localized and regional thermal consistencies. The thermally sensitized acupoints that we identified in this study, ST34, SP10, EX-LE2, EX-LE5, GB39 and BL40, may be good choices for the acupuncture treatment of knee OA. Please cite this article as: Tu JF, Wang XZ, Yan SY, Wang YR, Yang JW, Shi GX, Zhang WZ, Jing LN, Yang LS, Liu DH, Wang LQ, Mi BH. Thermal sensitization of acupoints in patients with knee osteoarthritis: A cross-sectional case-control study. J Integr Med. 2025; 23(3): 289-296.
Humans
;
Osteoarthritis, Knee/physiopathology*
;
Male
;
Cross-Sectional Studies
;
Middle Aged
;
Female
;
Acupuncture Points
;
Case-Control Studies
;
Aged
;
Skin Temperature
;
Acupuncture Therapy
5.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
Purpose:
We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data.
Materials and Methods:
The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type.
Results:
Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite.
Conclusion
Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment.
6.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
Purpose:
We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data.
Materials and Methods:
The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type.
Results:
Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite.
Conclusion
Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment.
7.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
Purpose:
We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data.
Materials and Methods:
The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type.
Results:
Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite.
Conclusion
Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment.
8.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
Purpose:
We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data.
Materials and Methods:
The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type.
Results:
Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite.
Conclusion
Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment.
9.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
Purpose:
We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data.
Materials and Methods:
The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type.
Results:
Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite.
Conclusion
Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment.
10.Update of systemic treatments in severe/recalcitrant atopic dermatitis:Consensus document of the KAAACI working group on atopic dermatitis
Myongsoon SUNG ; Young-Il KOH ; Mi-Ae KIM ; Hyunjung KIM ; Jung Im NA ; Dong-Ho NAHM ; Taek Ki MIN ; Yang PARK ; Dong Hun LEE ; Mi-Hee LEE ; So-Yeon LEE ; Youngsoo LEE ; Chong Hyun WON ; Hye Yung YUM ; Mira CHOI ; Eung Ho CHOI ; Woo Kyung KIM ;
Allergy, Asthma & Respiratory Disease 2024;12(2):58-71
Atopic dermatitis (AD) is the most prevalent inflammatory skin condition, with approximately 80% of cases originating in childhood and some emerging in adulthood. In South Korea, the estimated prevalence of AD ranges between 10% and 20% in children and 1% and 3% in adults. Severe/recalcitrant AD manifests as a chronic, relapsing skin disorder, persisting with uncontrolled symptoms even after topical steroid treatment. Corticosteroids and systemic immunosuppression, conventionally the standard care for difficult-to-treat diseases, cause numerous undesirable side effects. When AD persists despite topical steroid application, systemic therapies like cyclosporine or systemic steroids become the second treatment strategy. The desire for targeted treatments, along with an enhanced understanding of AD’s pathophysiology, has spurred novel therapeutic development. Recent advances introduce novel systemic options, such as biological agents and small-molecule therapy, tailored to treat severe or recalcitrant AD. Notably, dupilumab, a monoclonal antibody inhibiting interleukin 4 and 13, marked a transformative breakthrough upon gaining approval from the U.S. Food and Drug Administration (FDA) in 2017, leading to a paradigm shift in the systemic treatment of AD. Furthermore, both dupilumab and Janus kinase inhibitors, including baricitinib, abrocitinib, and tofacitinib, now approved by the Korean FDA, have established their applicability in clinical practice. These innovative therapeutic agents have demonstrated favorable clinical outcomes, effectively addressing moderate to severe AD with fewer side reactions than those associated with previous systemic immunosuppressants. This review summarizes the latest advancements and evidence regarding systemic treatments for AD, including newly approved drugs in Korea.

Result Analysis
Print
Save
E-mail