1.Clinical Observation of Modified Zhigancao Tang in Treating Patients with Liver and Kidney Deficiency of Parkinson's Disease and Its Effect on Neuronal Signal-related Proteins
Yifo WEI ; Furong LYU ; Jia YAO ; Guonian LI ; Xianyi LUO ; Meng LUO ; Zhengzheng WEN ; Qiuqi LI ; Yihan LIU ; Linlin YANG ; Rui ZUO ; Wenxin DANG ; Fang MI ; Xiaoyan WANG ; Zhigang CHEN ; Fan LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):166-173
ObjectiveMicrotube associated protein-2 (MAP-2), alpha-tubulin (α-tubulin), and synaptophysin (SYP) are important proteins in neuronal signal communication. This paper observed the effects of modified Zhigancao Tang on the expression of serum α-Synuclein (α-Syn) and its oligomers, MAP-2, α-tubulin, and SYP of patients with liver and kidney deficiency of Parkinson's disease (PD), analyzed their correlation, and evaluated the therapeutic effect of modified Zhigancao Tang in patients with liver and kidney deficiency of PD based on α-Syn transmission pathway mediated by neuronal communication in vivo. MethodsA total of 60 patients with PD who met the inclusion criteria were randomly divided into a treatment group (30 cases) and a control group (30 cases). Both groups were treated on the basis of PD medicine, and the treatment group was treated with modified Zhigancao Tang. Both groups were treated for 12 weeks. The changes in UPDRS score, TCM syndrome score, and expression of serum α-Syn and its oligomers, MAP-2, α-tubulin, and SYP were observed before and after 12 weeks of treatment in each group. The correlation between the above-mentioned serum biological indexes and the levels of serum α-Syn and its oligomers was analyzed. ResultsAfter treatment, the TCM syndrome score, UPDRS score, UPDRS-Ⅱ score, and UPDRS-Ⅲ score of the treatment group were significantly decreased (P<0.05, P<0.01). The UPDRS score, UPDRS-Ⅱ score, and UPDRS-Ⅲ scores in the treatment group were significantly decreased compared with those in the control group after treatment (P<0.05). After treatment, the total effective rate of the control group was 63.3% (19/30), and that of the treatment group was 86.7% (26/30). The clinical effect of the observation group was better than the control group (Z=-2.03, P<0.05). The total effective rate of the observation group was better than that of the control group, and the difference was statistically significant (χ2=5.136, P<0.05). After treatment, the oligomer level of serum α-Syn and MAP-2 level in the treatment group were significantly decreased (P<0.05, P<0.01). The levels of serum α-Syn and its oligomers, as well as α-tubulin in the treatment group, were significantly decreased compared with those in the control group after treatment (P<0.05, P<0.01). Serum α-Syn was correlated with serum MAP-2 and α-Syn oligomer in patients with PD (P<0.05, P<0.01) but not correlated with serum SYP . Serum α-Syn oligomers of patients with PD were correlated with serum MAP-2 and α-tubulin (P<0.05, P<0.01) but not correlated with serum SYP level. Serum SYP of patients with PD was correlated with serum MAP-2 (P<0.05). ConclusionModified Zhigancao Tang has a therapeutic effect on patients with liver and kidney deficiency of PD by inhibiting the production of α-Syn oligomers and intervening α-Syn microtubule transport pathway in vivo.
2.The Effects of Tai Chi Training on Bone Density,Bone Turnover Markers,and Heart Rate Variability in High-Risk Osteoporosis Population
Jiaming LIN ; Chao LI ; Wei ZHAO ; Jun ZHOU ; Xiaoying CHEN ; Xiangyu XI ; Haijun HE ; Baohong MI ; Yuefeng CHEN ; Weiheng CHEN
Journal of Traditional Chinese Medicine 2025;66(15):1566-1571
ObjectiveTo explore the effects of the Tai Chi training on bone density, bone turnover markers, and heart rate variability for people with high-risk osteoporosis, and to provide evidence for the prevention of osteoporosis at early stage. MethodsSixty-six cases of people with high risk of osteoporosis were included, and they were divided into 33 cases each in the intervention group and the control group using the random number table method. The control group received osteoporosis health education three times a week, and the intervention group received Tai Chi training under the guidance of a trainer three times a week for 40 mins each time on the basis of the control group, and both groups were intervened for 12 weeks. Dual-energy X-ray absorptiometry was used to measure the bone density of L1~L4 vertebrae, bilateral femoral necks and bilateral total hips in the two groups before and after the intervention; enzyme-linked immunosorbent assay was used to determine bone turnover markers before and after the intervention, including pro-collagen type Ⅰ pro-amino-terminal prepropyl peptide (P1NP) and β-collagen type Ⅰ cross-linking carboxy-terminal peptide (β-CTX). Seven cases with good compliance in the intervention group were selected. After wearing the heart rate sensor, they successively performed Tai Chi training and walking activities recommended by the guideline for 20 mins each, and the heart rate variability (HRV) during exercise was collected, including time-domain indexes such as standard deviation of normal sinus intervals (SDNN), root-mean-square of the difference between adjacent RR intervals (RMSSD), frequency-domain metrics such as low-frequency power (LF), high-frequency power (HF), and low-frequency/high-frequency power ratio (LF/HF), as well as nonlinear metrics such as approximate entropy (ApEn), sample entropy (SampEn). ResultsFinally, 63 cases were included in the outcome analysis, including 30 cases in the intervention group and 33 cases in the control group. After the intervention, the differences of L1~L4 vertebrae, bone density of bilateral femoral neck and bilateral total hip in the intervention group were not statistically significant when compared with those before intervention (P>0.05), while the bone density of all parts of the control group decreased significantly compared with that before intervention (P<0.05), and the difference in the bone density of the L1~L4 vertebrae, bilateral femoral neck, and the right total hip before and after the intervention of the intervention group was smaller than that of the control group (P<0.05). The differences in P1NP and β-CTX between groups before and after intervention was not statistically significant (P>0.05). Compared with walking exercise, LF decreased, HF increased and LF/HF decreased during Tai Chi exercise (P<0.05); the time domain indexes and non-linear indexes between groups had no statistically significant difference (P>0.05). ConclusionTai Chi exercise can maintain lumbar, hip, and femoral bone density and improve sympathetic/parasympathetic balance in people at high risk for osteoporosis, but cannot significantly improve bone turnover markers.
4.Characteristics and Risk Analysis of COVID-19 Infection in Patients with Multiple Myeloma after Autologous Hematopoietic Stem Cell Transplantation.
Meng-Meng PAN ; Shi-Wei JIN ; Wan-Yan OUYANG ; Yan WAN ; Yi TAO ; Yuan-Fang LIU ; Wei-Ping ZHANG ; Jian-Qing MI
Journal of Experimental Hematology 2025;33(5):1358-1365
OBJECTIVE:
To retrospectively analyze the characteristics and influencing factors of COVID-19 infection in patients with multiple myeloma (MM) who underwent autologous hematopoietic stem cell transplantation (AHSCT).
METHODS:
The clinical data of MM patients who underwent AHSCT in Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine from May 26, 2021 to December 26, 2022 were collected. The onset of COVID-19 infection, corresponding symptoms and laboratory tests were followed up in outpatient or by the means of telephone contact and online questionnaires. Related analysis was then performed.
RESULTS:
This study included 96 patients, and 72 cases among them were infected with COVID-19 while 24 cases were uninfected. Logistic regression analysis showed that vaccination did not significantly reduce the risk of COVID-19 infection, but patients who received two doses of the vaccine had a lower risk of developing moderate and severe disease than those who did not receive or received one dose (OR =0.06, P =0.029). Patients who received daratumumab before had a higher risk of COVID-19 infection (OR =5.78, P =0.039), while those with a history of immunomodulatory drugs (IMiDs) had the opposite effect (OR =0.31, P =0.028). The use of both drugs did not affect the severity of COVID-19 infection.
CONCLUSION
For MM patients undergoing AHSCT as first-line chemotherapy, COVID-19 vaccination does not significantly reduce the infection rate, but it plays a role in preventing moderate and severe cases. The application of antineoplastic drugs with different mechanisms has a certain impact on the susceptibility to the COVID-19, which should be considered comprehensively when creating treatment plans.
Humans
;
Multiple Myeloma/complications*
;
COVID-19/epidemiology*
;
Hematopoietic Stem Cell Transplantation
;
Transplantation, Autologous
;
Retrospective Studies
;
Risk Assessment
;
Risk Factors
;
Male
;
Female
;
Middle Aged
;
SARS-CoV-2
;
Adult
;
Antibodies, Monoclonal
5.Artificial intelligence-driven multi-omics approaches in Alzheimer's disease: Progress, challenges, and future directions.
Fang REN ; Jing WEI ; Qingxin CHEN ; Mengling HU ; Lu YU ; Jianing MI ; Xiaogang ZHOU ; Dalian QIN ; Jianming WU ; Anguo WU
Acta Pharmaceutica Sinica B 2025;15(9):4327-4385
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss, with few effective treatments currently available. The multifactorial nature of AD, shaped by genetic, environmental, and biological factors, complicates both research and clinical management. Recent advances in artificial intelligence (AI) and multi-omics technologies provide new opportunities to elucidate the molecular mechanisms of AD and identify early biomarkers for diagnosis and prognosis. AI-driven approaches such as machine learning, deep learning, and network-based models have enabled the integration of large-scale genomic, transcriptomic, proteomic, metabolomic, and microbiomic datasets. These efforts have facilitated the discovery of novel molecular signatures and therapeutic targets. Methods including deep belief networks and joint deep semi-non-negative matrix factorization have contributed to improvements in disease classification and patient stratification. However, ongoing challenges remain. These include data heterogeneity, limited interpretability of complex models, a lack of large and diverse datasets, and insufficient clinical validation. The absence of standardized multi-omics data processing methods further restricts progress. This review systematically summarizes recent advances in AI-driven multi-omics research in AD, highlighting achievements in early diagnosis and biomarker discovery while discussing limitations and future directions needed to advance these approaches toward clinical application.
6.Evolution-guided design of mini-protein for high-contrast in vivo imaging.
Nongyu HUANG ; Yang CAO ; Guangjun XIONG ; Suwen CHEN ; Juan CHENG ; Yifan ZHOU ; Chengxin ZHANG ; Xiaoqiong WEI ; Wenling WU ; Yawen HU ; Pei ZHOU ; Guolin LI ; Fulei ZHAO ; Fanlian ZENG ; Xiaoyan WANG ; Jiadong YU ; Chengcheng YUE ; Xinai CUI ; Kaijun CUI ; Huawei CAI ; Yuquan WEI ; Yang ZHANG ; Jiong LI
Acta Pharmaceutica Sinica B 2025;15(10):5327-5345
Traditional development of small protein scaffolds has relied on display technologies and mutation-based engineering, which limit sequence and functional diversity, thereby constraining their therapeutic and application potential. Protein design tools have significantly advanced the creation of novel protein sequences, structures, and functions. However, further improvements in design strategies are still needed to more efficiently optimize the functional performance of protein-based drugs and enhance their druggability. Here, we extended an evolution-based design protocol to create a novel minibinder, BindHer, against the human epidermal growth factor receptor 2 (HER2). It not only exhibits super stability and binding selectivity but also demonstrates remarkable properties in tissue specificity. Radiolabeling experiments with 99mTc, 68Ga, and 18F revealed that BindHer efficiently targets tumors in HER2-positive breast cancer mouse models, with minimal nonspecific liver absorption, outperforming scaffolds designed through traditional engineering. These findings highlight a new rational approach to automated protein design, offering significant potential for large-scale applications in therapeutic mini-protein development.
7.Natural polyphenols as novel interventions for aging and age-related diseases: Exploring efficacy, mechanisms of action and implications for future research.
Wenze WU ; Yan MI ; Qingqi MENG ; Ning LI ; Wei LI ; Pu WANG ; Yue HOU
Chinese Herbal Medicines 2025;17(2):279-291
Natural polyphenols are a group of components widely found in traditional Chinese medicines and have been demonstrated to delay or prevent the development of aging and age-related diseases in recent years. As far as we know, the studies of natural polyphenols in aging and aging-related diseases have never been extensively reviewed. In the present paper, we reviewed recent advances of natural polyphenols in aging and common age-related diseases and the current technological methods to improve the bioavailability of natural polyphenols. The results showed that natural polyphenols have the potential to prevent or treat aging and common age-related diseases through multiple mechanisms. Nanotechnology, structural modifications, and matrix processing could provide strong technical support for the development of natural polyphenols to prevent or treat aging and age-related diseases. In conclusion, natural polyphenols have important potential in the prevention and treatment of aging and age-related diseases.
8.A review of transformer models in drug discovery and beyond.
Jian JIANG ; Long CHEN ; Lu KE ; Bozheng DOU ; Chunhuan ZHANG ; Hongsong FENG ; Yueying ZHU ; Huahai QIU ; Bengong ZHANG ; Guo-Wei WEI
Journal of Pharmaceutical Analysis 2025;15(6):101081-101081
Transformer models have emerged as pivotal tools within the realm of drug discovery, distinguished by their unique architectural features and exceptional performance in managing intricate data landscapes. Leveraging the innate capabilities of transformer architectures to comprehend intricate hierarchical dependencies inherent in sequential data, these models showcase remarkable efficacy across various tasks, including new drug design and drug target identification. The adaptability of pre-trained transformer-based models renders them indispensable assets for driving data-centric advancements in drug discovery, chemistry, and biology, furnishing a robust framework that expedites innovation and discovery within these domains. Beyond their technical prowess, the success of transformer-based models in drug discovery, chemistry, and biology extends to their interdisciplinary potential, seamlessly combining biological, physical, chemical, and pharmacological insights to bridge gaps across diverse disciplines. This integrative approach not only enhances the depth and breadth of research endeavors but also fosters synergistic collaborations and exchange of ideas among disparate fields. In our review, we elucidate the myriad applications of transformers in drug discovery, as well as chemistry and biology, spanning from protein design and protein engineering, to molecular dynamics (MD), drug target identification, transformer-enabled drug virtual screening (VS), drug lead optimization, drug addiction, small data set challenges, chemical and biological image analysis, chemical language understanding, and single cell data. Finally, we conclude the survey by deliberating on promising trends in transformer models within the context of drug discovery and other sciences.
9.Advancements and challenges of acupuncture randomized controlled trials.
Wei Song SEETOH ; Rachel Qin Rui LIM ; Run-Bing XU ; Ming-Xun SUN ; Peng ZHANG ; Mi-Na WANG
Journal of Integrative Medicine 2025;23(4):333-343
Acupuncture is an ancient treatment method used in traditional Chinese medicine and has been popularized worldwide. Over the past decade, there has been an increase in the amount of acupuncture research, mostly comprised of randomized controlled trials (RCTs) that aimed to answer the question on the efficacy of acupuncture. However, poor methodology and low replicability in these acupuncture RCTs have resulted in uncertainty about the efficacy of acupuncture. In this review, current advancements and challenges in acupuncture RCTs, regarding the methodological aspects of randomization, blinding, sham acupuncture and quality of reporting, were discussed. While there have been advancements in various aspects, current acupuncture RCTs still face pressing issues such as inadequate randomization and blinding, unviable sham acupuncture controls, and poor reporting quality. Given these limitations, this review seeks to identify the methodological problems that are responsible for these problems and to suggest solutions that could help to overcome them so as to improve the quality of future studies evaluating the efficacy of acupuncture. Please cite this article as: Seetoh WS, Lim RQR, Xu RB, Sun MX, Zhang P, Wang MN. Advancements and challenges of acupuncture randomized controlled trials. J Integr Med. 2025; 23(4): 333-343.
Acupuncture Therapy
;
Humans
;
Randomized Controlled Trials as Topic/methods*
;
Research Design
10.Exploration of New Susceptible Genes associated with Non-Alcoholic Fatty Liver Disease among Children with Obesity Using Whole Exome Sequencing.
Xiong Feng PAN ; Cai Lian WEI ; Jia You LUO ; Jun Xia YAN ; Xiang XIAO ; Jie WANG ; Yan ZHONG ; Mi Yang LUO
Biomedical and Environmental Sciences 2025;38(6):727-739
OBJECTIVE:
This study aimed to evaluate the association between susceptibility genes and non-alcoholic fatty liver disease (NAFLD) in children with obesity.
METHODS:
We conducted a two-step case-control study. Ninety-three participants were subjected to whole-exome sequencing (exploratory set). Differential genes identified in the small sample were validated in 1,022 participants using multiplex polymerase chain reaction and high-throughput sequencing (validation set).
RESULTS:
In the exploratory set, 14 genes from the NAFLD-associated pathways were identified. In the validation set, after adjusting for sex, age, and body mass index, ECI2 rs2326408 (dominant model: OR = 1.33, 95% CI: 1.02-1.72; additive model: OR = 1.22, 95% CI: 1.01-1.47), C6orf201 rs659305 (dominant model: OR = 1.30, 95% CI: 1.01-1.69; additive model: OR = 1.21, 95% CI: 1.00-1.45), CALML5 rs10904516 (pre-ad dominant model: OR = 1.36, 95% CI: 1.01-1.83; adjusted dominant model: OR = 1.40, 95% CI: 1.03-1.91; and pre-ad additive model: OR = 1.26, 95% CI: 1.04-1.66) polymorphisms were significantly associated with NAFLD in children with obesity ( P < 0.05). Interaction analysis revealed that the gene-gene interaction model of CALML5 rs10904516, COX11 rs17209882, and SCD5 rs3733228 was optional ( P < 0.05), demonstrating a negative interaction between the three genes.
CONCLUSION
In the Chinese population, the CALML5 rs10904516, C6orf201 rs659305, and ECI2 rs2326408 variants could be genetic markers for NAFLD susceptibility.
Humans
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Child
;
Male
;
Female
;
Genetic Predisposition to Disease
;
Case-Control Studies
;
Exome Sequencing
;
Adolescent
;
Polymorphism, Single Nucleotide
;
Obesity/complications*
;
Pediatric Obesity/complications*
;
China

Result Analysis
Print
Save
E-mail