1.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
2.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
Purpose:
Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS.
Materials and Methods:
This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches.
Results:
TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making.
Conclusion
TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment.
3.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
4.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
5.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
Purpose:
Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS.
Materials and Methods:
This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches.
Results:
TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making.
Conclusion
TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment.
6.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
7.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
Purpose:
Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS.
Materials and Methods:
This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches.
Results:
TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making.
Conclusion
TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment.
8.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
9.Complement Activation and Hemolysis in Non-human Primates Following Transfusion of Genetically Modified Pig Red Blood Cells
Hee Jung KANG ; Juhye ROH ; Haneulnari LEE ; Eun Mi PARK ; Hye Won LEE ; Ju Young LEE ; Jeong Ho HWANG ; Joohyun SHIM ; Kimyung CHOI
Annals of Laboratory Medicine 2025;45(5):509-519
Background:
Pig red blood cells (RBCs) are rapidly eliminated when transfused into nonhuman primates (NHPs) because of immune reactions involving antibody binding and complement activation. We assessed the relationship between post-transfusion hemolysis and complement activation.
Methods:
RBCs for transfusion were prepared from wild-type (WT) and genetically modified pigs and NHPs. After the withdrawal of 25% of the blood volume, NHPs received transfusions of WT (N = 4), triple knockout (TKO, N = 8), and TKO pig RBCs expressing human CD55 and CD39 (TKO/hCD55.hCD39, N = 4). Additional groups received repeated xenotransfusions (ReXTf, N = 3), NHP RBC transfusions (N = 3), or a saline infusion (N = 4).Blood samples were collected at multiple time points to measure Hb and complement fragment (C3a, C4a, and factor Bb) levels and agglutination titers.
Results:
Hb levels were restored by transfusions but not by saline infusion. The degree of complement activation varied with the type of transfused RBCs, with significant increases in C3a and factor Bb levels immediately after xenotransfusions but not allotransfusions.These increases were particularly notable in ReXTf and negatively correlated with Hb levels on post-transfusion day 1 (ρ = –0.547 and –0.556; P = 0.0187 and 0.0165, respectively).In TKO/hCD55.hCD39 pig RBC transfusions, C3a and factor Bb peak levels were delayed until post-transfusion day 3, unlike in TKO pig RBC transfusions.
Conclusions
Post-transfusion complement activation varies depending on prior sensitization and genetic modifications in pig RBCs. Monitoring complement activation can provide insight into the survival and compatibility of transfused RBCs in NHPs.

Result Analysis
Print
Save
E-mail