1.Suppression of METTL3 expression attenuated matrix stiffness-induced vaginal fibroblast-to-myofibroblast differentiation and abnormal modulation of the extracellular matrix in pelvic organ prolapse.
Xiuqi WANG ; Tao GUO ; Xiaogang LI ; Zhao TIAN ; Linru FU ; Zhijing SUN
Chinese Medical Journal 2025;138(7):859-867
BACKGROUND:
Fibrosis of the connective tissue in the vaginal wall predominates in pelvic organ prolapse (POP), which is characterized by excessive fibroblast-to-myofibroblast differentiation and abnormal deposition of the extracellular matrix (ECM). Our study aimed to investigate the effect of ECM stiffness on vaginal fibroblasts and to explore the role of methyltransferase 3 (METTL3) in the development of POP.
METHODS:
Polyacrylamide hydrogels were applied to create an ECM microenvironment with variable stiffness to evaluate the effects of ECM stiffness on the proliferation, differentiation, and expression of ECM components in vaginal fibroblasts. METTL3 small interfering RNA and an overexpression vector were transfected into vaginal fibroblasts to evaluate the effects of METTL3 silencing and overexpression on matrix stiffness-induced vaginal fibroblast-to-myofibroblast differentiation and abnormal modulation of the ECM. Both procedures were detected by 5-ethynyl-2'-deoxyuridine (EdU) staining, Western blotting (WB), quantitative real-time polymerase chain reaction (RT-qPCR), and immunofluorescence (IF).
RESULTS:
Vaginal fibroblasts from POP patients exhibited increased proliferation ability, increased expression of α-smooth muscle actin (α-SMA), decreased expression of collagen I/III, and significantly decreased expression of tissue inhibitors of matrix metalloproteinases (TIMPs) in the stiff matrix ( P <0.05). Compared with those from non-POP patients, vaginal wall tissues from POP patients demonstrated a significant increase in METTL3 content ( P <0.05). However, silencing METTL3 expression in vaginal fibroblasts with high ECM stiffness resulted in decreased proliferation ability, decreased α-SMA expression, an increased ratio of collagen I/III, and increased TIMP1 and TIMP2 expression. Conversely, METTL3 overexpression significantly promoted the process of increased proliferation ability, increased α-SMA expression, decreased ratio of collagen I/III and decreased TIMP1 and TIMP2 expression in the soft matrix ( P <0.05).
CONCLUSIONS
Elevated ECM stiffness can promote excessive proliferation, differentiation, and abnormal ECM modulation, and the expression of METTL3 plays an important role in alleviating or aggravating matrix stiffness-induced vaginal fibroblast-to-myofibroblast differentiation and abnormal ECM modulation.
Humans
;
Female
;
Extracellular Matrix/metabolism*
;
Cell Differentiation/genetics*
;
Methyltransferases/metabolism*
;
Pelvic Organ Prolapse/pathology*
;
Fibroblasts/metabolism*
;
Myofibroblasts/metabolism*
;
Vagina/metabolism*
;
Cell Proliferation/physiology*
;
Cells, Cultured
;
Middle Aged
2.Cardiomyocyte-specific long noncoding RNA Trdn-as induces mitochondrial calcium overload by promoting the m6A modification of calsequestrin 2 in diabetic cardiomyopathy.
Xiaohan LI ; Ling LIU ; Han LOU ; Xinxin DONG ; Shengxin HAO ; Zeqi SUN ; Zijia DOU ; Huimin LI ; Wenjie ZHAO ; Xiuxiu SUN ; Xin LIU ; Yong ZHANG ; Baofeng YANG
Frontiers of Medicine 2025;19(2):329-346
Diabetic cardiomyopathy (DCM) is a medical condition characterized by cardiac remodeling and dysfunction in individuals with diabetes mellitus. Sarcoplasmic reticulum (SR) and mitochondrial Ca2+ overload in cardiomyocytes have been recognized as biological hallmarks in DCM; however, the specific factors underlying these abnormalities remain largely unknown. In this study, we aimed to investigate the role of a cardiac-specific long noncoding RNA, D830005E20Rik (Trdn-as), in DCM. Our results revealed the remarkably upregulation of Trdn-as in the hearts of the DCM mice and cardiomyocytes treated with high glucose (HG). Knocking down Trdn-as in cardiac tissues significantly improved cardiac dysfunction and remodeling in the DCM mice. Conversely, Trdn-as overexpression resulted in cardiac damage resembling that observed in the DCM mice. At the cellular level, Trdn-as induced Ca2+ overload in the SR and mitochondria, leading to mitochondrial dysfunction. RNA-seq and bioinformatics analyses identified calsequestrin 2 (Casq2), a primary calcium-binding protein in the junctional SR, as a potential target of Trdn-as. Further investigations revealed that Trdn-as facilitated the recruitment of METTL14 to the Casq2 mRNA, thereby enhancing the m6A modification of Casq2. This modification increased the stability of Casq2 mRNA and subsequently led to increased protein expression. When Casq2 was knocked down, the promoting effects of Trdn-as on Ca2+ overload and mitochondrial damage were mitigated. These findings provide valuable insights into the pathogenesis of DCM and suggest Trdn-as as a potential therapeutic target for this condition.
Animals
;
Diabetic Cardiomyopathies/pathology*
;
RNA, Long Noncoding/genetics*
;
Myocytes, Cardiac/metabolism*
;
Mice
;
Calsequestrin/genetics*
;
Calcium/metabolism*
;
Male
;
Sarcoplasmic Reticulum/metabolism*
;
Methyltransferases/metabolism*
;
Mice, Inbred C57BL
;
Mitochondria, Heart/metabolism*
;
Disease Models, Animal
;
Mitochondria/metabolism*
3.m6A modification regulates PLK1 expression and mitosis.
Xiaoli CHANG ; Xin YAN ; Zhenyu YANG ; Shuwen CHENG ; Xiaofeng ZHU ; Zhantong TANG ; Wenxia TIAN ; Yujun ZHAO ; Yongbo PAN ; Shan GAO
Chinese Journal of Biotechnology 2025;41(4):1559-1572
N6-methyladenosine (m6A) modification plays a critical role in cell cycle regulation, while the mechanism of m6A in regulating mitosis remains underexplored. Here, we found that the total m6A modification level in cells increased during mitosis by the liquid chromatography-mass spectrometry/mass spectrometry and m6A dot blot assays. Silencing methyltransferase-like 3 (METTL3) or METTL14 results in delayed mitosis, abnormal spindle assembly, and chromosome segregation defects by the immunofluorescence. By analyzing transcriptome-wide m6A targets in HeLa cells, we identified polo-like kinase 1 (PLK1) as a key gene modified by m6A in regulating mitosis. Specifically, through immunoblotting and RNA pulldown, m6A modification inhibits PLK1 translation via YTH N6-methyladenosine RNA binding protein 1, thus mediating cell cycle homeostasis. Demethylation of PLK1 mRNA leads to significant mitotic abnormalities. These findings highlight the critical role of m6A in regulating mitosis and the potential of m6A as a therapeutic target in proliferative diseases such as cancer.
Humans
;
Polo-Like Kinase 1
;
Cell Cycle Proteins/metabolism*
;
Proto-Oncogene Proteins/metabolism*
;
Protein Serine-Threonine Kinases/metabolism*
;
Mitosis/physiology*
;
HeLa Cells
;
Adenosine/genetics*
;
Methyltransferases/metabolism*
;
RNA, Messenger/metabolism*
;
RNA-Binding Proteins/metabolism*
4.N-terminal domain of Rep encoded by beet severe curly top virus mediates suppression of RNA silencing and induces VIM5 expression.
Jingyu XU ; Jianxin LU ; Zhenyu YU ; Meijie HU ; Chengkai GUO ; Zhongqi QIU ; Zhongqi CHEN
Chinese Journal of Biotechnology 2025;41(10):3956-3968
Geminiviruses cause substantial crop yield losses worldwide. The replication initiator protein (Rep) encoded by geminiviruses is indispensable for geminiviral replication. The Rep protein encoded by beet severe curly top virus (BSCTV, genus Curtovirus, family Geminiviridae) induces VARIANT IN METHYLATION 5 (VIM5) expression in Arabidopsis leaves upon BSCTV infection. VIM5 functions as a ubiquitination-related E3 ligase to promote the proteasomal degradation of methyltransferases, resulting in reduction of methylation levels in the BSCTV C2-3 promoter. However, the specific domains of Rep responsible for VIM5 induction remain poorly characterized. Although Rep proteins from several geminiviruses act as viral suppressors of RNA silencing (VSRs), whether BSCTV Rep also possesses VSR activity remains to be illustrated. In this study, we employed a transient expression system in the 16c-GFP transgenic and the wild-type Nicotiana benthamiana plants to analyze the VSR and the VIM5-inducing activities of different truncated Rep proteins haboring distinct domains. We found that the N-terminal domain (amino acids 1-180) of Rep suppressed GFP silencing in 16c-GFP transgenic N. benthamiana leaves. The minimal N-terminal fragment (amino acids 1-104) induced VIM5 expression upon co-infiltration, while C-terminal truncations lacked VIM5-inducing activity. Our results indicate that the N-terminal domain of Rep encoded by BSCTV mediates the suppression of RNA silencing and induces VIM5 expression. Thus, our findings contribute to a better understanding of interactions between geminiviral Rep and plant hosts.
Geminiviridae/genetics*
;
Nicotiana/metabolism*
;
Arabidopsis/metabolism*
;
RNA Interference
;
Viral Proteins/metabolism*
;
Arabidopsis Proteins/metabolism*
;
Plants, Genetically Modified/metabolism*
;
Protein Domains
;
Plant Diseases/virology*
;
Methyltransferases/metabolism*
;
Ubiquitin-Protein Ligases/metabolism*
;
DNA Helicases/genetics*
5.Study on the Role and Mechanism of METTL3 Mediating the Up-regulation of m6A Modified Long Non-coding RNA THAP7-AS1 in Promoting the Occurrence of Lung Cancer.
Yu ZHANG ; Yanhong WANG ; Mei LIU
Chinese Journal of Lung Cancer 2024;26(12):919-933
BACKGROUND:
Lung cancer is a major threat to human health. The molecular mechanisms related to the occurrence and development of lung cancer are complex and poorly known. Exploring molecular markers related to the development of lung cancer is helpful to improve the effect of early diagnosis and treatment. Long non-coding RNA (lncRNA) THAP7-AS1 is known to be highly expressed in gastric cancer, but has been less studied in other cancers. The aim of the study is to explore the role and mechanism of methyltransferase-like 3 (METTL3) mediated up-regulation of N6-methyladenosine (m6A) modified lncRNA THAP7-AS1 expression in promoting the development of lung cancer.
METHODS:
Samples of 120 lung cancer and corresponding paracancerous tissues were collected. LncRNA microarrays were used to analyze differentially expressed lncRNAs. THAP7-AS1 levels were detected in lung cancer, adjacent normal tissues and lung cancer cell lines by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The diagnostic value of THAP7-AS1 in lung cancer and the relationship between THAP7-AS1 expression and survival rate and clinicopathological parameters were analyzed. Bioinformatics analysis, methylated RNA immunoprecipitation (meRIP), RNA pull-down and RNA-immunoprecipitation (RIP) assay were used to investigate the molecular regulation mechanism of THAP7-AS1. Cell proliferation, migration, invasion and tumorigenesis of SPC-A-1 and NCI-H1299 cells were determined by MTS, colony-formation, scratch, Transwell and xenotransplantation in vivo, respectively. Expression levels of phosphoinositide 3-kinase/protein kenase B (PI3K/AKT) signal pathway related protein were detected by Western blot.
RESULTS:
Expression levels of THAP7-AS1 were higher in lung cancer tissues and cell lines (P<0.05). THAP7-AS1 has certain diagnostic value in lung cancer [area under the curve (AUC)=0.737], and its expression associated with overall survival rate, tumor size, tumor-node-metastasis (TNM) stage and lymph node metastasis (P<0.05). METTL3-mediated m6A modification enhanced THAP7-AS1 expression. The cell proliferation, migration, invasion and the volume and mass of transplanted tumor were all higher in the THAP7-AS1 group compared with the NC group and sh-NC group of SPC-A-1 and NCI-H1299 cells, while the cell proliferation, migration and invasion were lower in the sh-THAP7-AS1 group (P<0.05). THAP7-AS1 binds specifically to Cullin 4B (CUL4B). The cell proliferation, migration, invasion, and expression levels of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), phosphoinositide-3 kinase, catalytic subunit delta (PIK3CD), phospho-phosphatidylinositol 3-kinase (p-PI3K), phospho-protein kinase B (p-AKT) and phospho-mammalian target of rapamycin (p-mTOR) were higher in the THAP7-AS1 group compared with the Vector group of SPC-A-1 and NCI-H1299 cells (P<0.05).
CONCLUSIONS
LncRNA THAP7-AS1 is stably expressed through m6A modification mediated by METTL3, and combines with CUL4B to activate PI3K/AKT signal pathway, which promotes the occurrence and development of lung cancer.
Humans
;
Lung Neoplasms/pathology*
;
RNA, Long Noncoding/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Up-Regulation
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
;
Methyltransferases/metabolism*
;
Cullin Proteins/genetics*
6.Role of m6A RNA methylation in renal resident cell injury.
Zixia ZHAO ; Chen ZHANG ; Si WU ; Junjun LUAN ; Hua ZHOU
Journal of Central South University(Medical Sciences) 2024;49(11):1757-1768
RNA methylation modification is a highly dynamic and reversible epigenetic regulatory mechanism, primarily controlled by 3 types of factors: Methyltransferases, demethylases, and methylation reader proteins. N6-methyladenosine (m6A) methylation is the most common form of RNA methylation, and dysregulation of this process may lead to the development of various diseases. Renal diseases have drawn considerable attention owing to their high incidence, poor prognosis, and substantial socioeconomic burden. Renal resident cell injury plays a crucial role in the onset and progression of various kidney diseases. Understanding the mechanisms underlying renal resident cell injury is essential for advancing the prevention and treatment of kidney diseases. Recent studies have revealed that RNA m6A methylation plays a critical role in renal resident cell injury, highlighting its potential as a novel therapeutic target for kidney disease treatment.
Humans
;
Methylation
;
Adenosine/metabolism*
;
Methyltransferases/metabolism*
;
Kidney/metabolism*
;
Kidney Diseases/pathology*
;
Epigenesis, Genetic
;
RNA/genetics*
;
RNA Methylation
7.Targeting TRMT5 suppresses hepatocellular carcinoma progression via inhibiting the HIF-1α pathways.
Qiong ZHAO ; Luwen ZHANG ; Qiufen HE ; Hui CHANG ; Zhiqiang WANG ; Hongcui CAO ; Ying ZHOU ; Ruolang PAN ; Ye CHEN
Journal of Zhejiang University. Science. B 2023;24(1):50-63
Accumulating evidence has confirmed the links between transfer RNA (tRNA) modifications and tumor progression. The present study is the first to explore the role of tRNA methyltransferase 5 (TRMT5), which catalyzes the m1G37 modification of mitochondrial tRNAs in hepatocellular carcinoma (HCC) progression. Here, based on bioinformatics and clinical analyses, we identified that TRMT5 expression was upregulated in HCC, which correlated with poor prognosis. Silencing TRMT5 attenuated HCC proliferation and metastasis both in vivo and in vitro, which may be partially explained by declined extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Mechanistically, we discovered that knockdown of TRMT5 inactivated the hypoxia-inducible factor-1 (HIF-1) signaling pathway by preventing HIF-1α stability through the enhancement of cellular oxygen content. Moreover, our data indicated that inhibition of TRMT5 sensitized HCC to doxorubicin by adjusting HIF-1α. In conclusion, our study revealed that targeting TRMT5 could inhibit HCC progression and increase the susceptibility of tumor cells to chemotherapy drugs. Thus, TRMT5 might be a carcinogenesis candidate gene that could serve as a potential target for HCC therapy.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Cell Hypoxia
;
Cell Line, Tumor
;
Gene Expression Regulation, Neoplastic
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Liver Neoplasms/pathology*
;
Signal Transduction/genetics*
;
tRNA Methyltransferases/metabolism*
8.Neuronal Histone Methyltransferase EZH2 Regulates Neuronal Morphogenesis, Synaptic Plasticity, and Cognitive Behavior in Mice.
Mei ZHANG ; Yong ZHANG ; Qian XU ; Joshua CRAWFORD ; Cheng QIAN ; Guo-Hua WANG ; Jiang QIAN ; Xin-Zhong DONG ; Mikhail V PLETNIKOV ; Chang-Mei LIU ; Feng-Quan ZHOU
Neuroscience Bulletin 2023;39(10):1512-1532
The histone methyltransferase enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2)-mediated trimethylation of histone H3 lysine 27 (H3K27me3) regulates neural stem cell proliferation and fate specificity through silencing different gene sets in the central nervous system. Here, we explored the function of EZH2 in early post-mitotic neurons by generating a neuron-specific Ezh2 conditional knockout mouse line. The results showed that a lack of neuronal EZH2 led to delayed neuronal migration, more complex dendritic arborization, and increased dendritic spine density. Transcriptome analysis revealed that neuronal EZH2-regulated genes are related to neuronal morphogenesis. In particular, the gene encoding p21-activated kinase 3 (Pak3) was identified as a target gene suppressed by EZH2 and H3K27me3, and expression of the dominant negative Pak3 reversed Ezh2 knockout-induced higher dendritic spine density. Finally, the lack of neuronal EZH2 resulted in impaired memory behaviors in adult mice. Our results demonstrated that neuronal EZH2 acts to control multiple steps of neuronal morphogenesis during development, and has long-lasting effects on cognitive function in adult mice.
Animals
;
Mice
;
Enhancer of Zeste Homolog 2 Protein/metabolism*
;
Histone Methyltransferases/metabolism*
;
Histones/genetics*
;
Morphogenesis
;
Neuronal Plasticity
;
Neurons/metabolism*
9.METTL14 is a chromatin regulator independent of its RNA N6-methyladenosine methyltransferase activity.
Xiaoyang DOU ; Lulu HUANG ; Yu XIAO ; Chang LIU ; Yini LI ; Xinning ZHANG ; Lishan YU ; Ran ZHAO ; Lei YANG ; Chuan CHEN ; Xianbin YU ; Boyang GAO ; Meijie QI ; Yawei GAO ; Bin SHEN ; Shuying SUN ; Chuan HE ; Jun LIU
Protein & Cell 2023;14(9):683-697
METTL3 and METTL14 are two components that form the core heterodimer of the main RNA m6A methyltransferase complex (MTC) that installs m6A. Surprisingly, depletion of METTL3 or METTL14 displayed distinct effects on stemness maintenance of mouse embryonic stem cell (mESC). While comparable global hypo-methylation in RNA m6A was observed in Mettl3 or Mettl14 knockout mESCs, respectively. Mettl14 knockout led to a globally decreased nascent RNA synthesis, whereas Mettl3 depletion resulted in transcription upregulation, suggesting that METTL14 might possess an m6A-independent role in gene regulation. We found that METTL14 colocalizes with the repressive H3K27me3 modification. Mechanistically, METTL14, but not METTL3, binds H3K27me3 and recruits KDM6B to induce H3K27me3 demethylation independent of METTL3. Depletion of METTL14 thus led to a global increase in H3K27me3 level along with a global gene suppression. The effects of METTL14 on regulation of H3K27me3 is essential for the transition from self-renewal to differentiation of mESCs. This work reveals a regulatory mechanism on heterochromatin by METTL14 in a manner distinct from METTL3 and independently of m6A, and critically impacts transcriptional regulation, stemness maintenance, and differentiation of mESCs.
Animals
;
Mice
;
Methylation
;
Chromatin
;
Histones/metabolism*
;
RNA, Messenger/genetics*
;
Methyltransferases/metabolism*
;
RNA/metabolism*
10.Specific Regulation of m6A by SRSF7 Promotes the Progression of Glioblastoma.
Yixian CUN ; Sanqi AN ; Haiqing ZHENG ; Jing LAN ; Wenfang CHEN ; Wanjun LUO ; Chengguo YAO ; Xincheng LI ; Xiang HUANG ; Xiang SUN ; Zehong WU ; Yameng HU ; Ziwen LI ; Shuxia ZHANG ; Geyan WU ; Meisongzhu YANG ; Miaoling TANG ; Ruyuan YU ; Xinyi LIAO ; Guicheng GAO ; Wei ZHAO ; Jinkai WANG ; Jun LI
Genomics, Proteomics & Bioinformatics 2023;21(4):707-728
Serine/arginine-rich splicing factor 7 (SRSF7), a known splicing factor, has been revealed to play oncogenic roles in multiple cancers. However, the mechanisms underlying its oncogenic roles have not been well addressed. Here, based on N6-methyladenosine (m6A) co-methylation network analysis across diverse cell lines, we find that the gene expression of SRSF7 is positively correlated with glioblastoma (GBM) cell-specific m6A methylation. We then indicate that SRSF7 is a novel m6A regulator, which specifically facilitates the m6A methylation near its binding sites on the mRNAs involved in cell proliferation and migration, through recruiting the methyltransferase complex. Moreover, SRSF7 promotes the proliferation and migration of GBM cells largely dependent on the presence of the m6A methyltransferase. The two m6A sites on the mRNA for PDZ-binding kinase (PBK) are regulated by SRSF7 and partially mediate the effects of SRSF7 in GBM cells through recognition by insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Together, our discovery reveals a novel role of SRSF7 in regulating m6A and validates the presence and functional importance of temporal- and spatial-specific regulation of m6A mediated by RNA-binding proteins (RBPs).
Humans
;
Cell Line, Tumor
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
Glioblastoma/genetics*
;
Methyltransferases/metabolism*
;
RNA Splicing Factors/metabolism*
;
RNA, Messenger/genetics*
;
RNA-Binding Proteins/metabolism*
;
Serine-Arginine Splicing Factors/metabolism*
;
RNA Methylation/genetics*

Result Analysis
Print
Save
E-mail