1.Identification of miRNAs induced by low-dose methylmercury exposure and their roles in inflammatory responses using human aortic endothelial cells.
Rika MATSUYAMA ; Athira NANDAKUMAR ; Munekazu YAMAKUCHI ; Saekhol BAKRI ; Shiroh TANOUE ; Mayumi TSUJI ; Megumi YAMAMOTO ; Teruto HASHIGUCHI ; Chihaya KORIYAMA
Environmental Health and Preventive Medicine 2025;30():93-93
BACKGROUND:
Exposure to methylmercury (MeHg) is predominantly attributed to consumption of marine products. However, the general population is exposed to low MeHg levels, which can induce chronic inflammation. Although some MeHg-related microRNAs (miRNAs) have been reported, their functions remain elusive. The objective of this study was to identify the miRNAs induced by low-level MeHg exposure in a human endothelial cell line (HAECs). This study aimed to determine the specific miRNAs induced by low-level MeHg exposure using a HAECs as a potential novel and sensitive biomarker. The roles of miRNAs in inflammatory processes have been examined.
METHODS:
Using HAECs, a miRNA microarray assay was performed to identify miRNAs with altered expression upon exposure to a non-cytotoxic MeHg level (0.1 and 1.5 µM). The expression patterns of interleukin-6 and -8, cyclooxygenase 2 (COX-2), RelB, and prostaglandin E2 (PGE2) were examined after transfection of the identified miRNAs with mimics/inhibitors.
RESULTS:
Although the microarray assay identified six MeHg-specific miRNAs, miR-3613-5p, upregulated by 0.1 and 1.5 µM MeHg exposures, demonstrated the best reproducibility in HAECs. Transfection with the miR-3613-5p mimic enhanced the MeHg-induced inflammatory responses, including PGE2 and COX-2 protein levels, whereas the miR-3613-5p inhibitor suppressed these inflammatory responses.
CONCLUSION
This study observed that miR-3613-5p is induced by low-dose MeHg exposure, plays a crucial role in the inflammatory process, and could serve as a novel and sensitive biomarker for low-level MeHg exposure.
Methylmercury Compounds/adverse effects*
;
Humans
;
MicroRNAs/genetics*
;
Endothelial Cells/metabolism*
;
Inflammation/genetics*
;
Cell Line
;
Aorta/drug effects*
;
Biomarkers/metabolism*
2.Treadmill exercise protects against methylmercury neurotoxicity by increasing BDNF in the mouse brain.
Environmental Health and Preventive Medicine 2025;30():98-98
BACKGROUND:
Methylmercury (MeHg) causes damage specifically in cerebrocortical neurons, but not in hippocampal neurons. In our previous studies using cultured neurons, we found that brain-derived neurotrophic factor (BDNF), which is prominently present in hippocampal neurons, plays a key role in resistance to MeHg neurotoxicity. Our findings, combined with recent findings that moderate exercise increases BDNF in the brain, led us to hypothesize that moderate exercise protects against MeHg-induced neurotoxicity by inducing BDNF expression.
METHODS:
C57 black 6NJcl (C57BL/6NJcl) male mice were used to evaluate the effects of treadmill exercise (a moderate exercise) on the neurotoxicity of MeHg exposure at 1.5 mg/kg/day. The effects of treadmill exercise on MeHg neurotoxicity were evaluated through neurobehavioral, neuropathological, and biochemical analyses using brain tissue, blood, and muscle tissue.
RESULTS:
Treadmill exercise had a significant inhibitory effect on the neurological symptoms associated with apoptotic neuronal death and subsequent cerebrocortical neuron loss induced by MeHg exposure. In the cerebral cortex, treadmill exercise significantly increased BDNF levels and activated the neuroprotective-related BDNF-tropomyosin receptor kinase (Trk) B and p44/42 mitogen-activated protein kinase (MAPK) pathways along with significantly suppressing the neuronal cell death-associated p38 MAPK pathway. Furthermore, treadmill exercise significantly increased fibronectin type III domain containing 5 (FNDC5) expression in the muscle tissue and elevated ed the concentration of its metabolite, irisin, in the blood.
CONCLUSIONS
These results suggest that treadmill exercise increases BDNF in the brain and suppresses neurotoxic pathways, ultimately protecting against MeHg neurotoxicity. Moreover, the increase of BDNF in the brain may be attributed to the exercise-induced increased expression of FNDC5 in muscle tissue from where it is released into the blood as irisin and finally transferred into the brain and promoted BDNF production.
Animals
;
Brain-Derived Neurotrophic Factor/genetics*
;
Methylmercury Compounds/toxicity*
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Physical Conditioning, Animal
;
Brain/drug effects*
;
Neurotoxicity Syndromes/prevention & control*
3.Determination of methylmercury in urine by direct mercury analyzer.
Fu WANG ; Yun Ting ZHANG ; Fan SU ; Cheng Peng HUANG ; Lan LUO
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(4):304-306
Objective: To develop asolvent extraction-direct mercury analyzer method for determination of methylmercury in urine. Methods: After the urinehydrolyzesd by hydrobromic acid, methylmercury was extracted by tolueneand reverse-extracted from L-cysteine solution, it was then detectedbydirect mercuryanalyzer. Results: The linear range was 0.2-50.0 μg/L, and the related coefficient was 0.9999. The relative standard deviations (RSD) within the group were 5.04%-6.64%, and the RSD between the group were 5.65%-8.11 %. The average recovery efficiencies were 85.4%-95.5%. The detection limitation was 0.0482 μg/L and the quantification concentrations was 0.1607 μg/L. Conclusion: The method, which has low detection limit, high sensitivity, easy to operate, is stability for the determination of methylmercury in urine.
Mercury
;
Methylmercury Compounds
4.Mercury species analysis and tissue distribution in rats after continuous administration of Cinnabaris.
Chun-Jiao HE ; Jiao-Yang LUO ; Hao-Nan RUAN ; Ya-Wen LUO ; Tong-Wei KE ; Xu-Hua QIN ; Mei-Hua YANG
China Journal of Chinese Materia Medica 2023;48(22):6173-6182
Cinnabaris is a traditional Chinese medicine(TCM) commonly used for sedation and tranquilization in clinics, and its safety has always been a concern. This study intends to investigate the species and tissue distribution of mercury in rats after continuous administration of Cinnabaris. In the experiment, 30 rats were randomly divided into the control group(equivalent to 0.5% carboxy-methyl cellulose sodium), low-dose Cinnabaris group(0.2 g·kg~(-1)), high-dose Cinnabaris group(2 g·kg~(-1)), pseudogerm-free control group(equivalent to 0.5% sodium carboxymethyl cellulose), and pseudogerm-free Cinnabaris group(2 g·kg~(-1)). They were orally administered for 30 consecutive days. Ultrasound-assisted acid extraction method combined with high performance liquid chromatography and inductively coupled plasma-mass spectrometry(HPLC-ICP-MS) was adopted to determine inorganic mercury [Hg(Ⅱ)], methylmercury(MeHg), and ethylmercury(EtHg) in different tissue, plasma, urine, and feces of rats. The optimal detection conditions and extraction methods were optimized, and the linearity(R~2>0.999 3), precision(RSD<7.0%), and accuracy(spike recoveries ranged from 73.05% to 109.5%) of all the mercury species were satisfied, meeting the requirements of analysis. The results of mercury species detection showed that Hg(Ⅱ) was detected in all the tissue of the five experimental groups, and the main accumulating organs were the intestinal tract, stomach, and kidney. MeHg existed at a low concentration in most tissue, and EtHg was not detected in all groups. In addition, pathological examination results showed that hepatocyte vacuolar degeneration, loose cytoplasm, light staining, and mononuclear cell infiltration were observed in the high-dose Cinnabaris group, low-dose Cinnabaris group, and pseudogerm-free Cinnabaris group, with slightly milder lesions in the low-dose Cinnabaris group. Hydrous degeneration of renal tubular epithelium could be seen in the high-dose Cinnabaris group and pseudogerm-free Cinnabaris group, but there was no significant difference between the other groups and the control group. No abnormal changes were found in the brain tissue of rats in each group. This paper studied the different mercury species and tissue distribution in normal and pseudogerm-free rats after continuous administration of Cinnabaris for 30 days and clarified its effects on the tissue structure of the liver, kidney, and brain, which provided supporting evidence for the safety evaluation of Cinnabaris.
Rats
;
Animals
;
Mercury/analysis*
;
Tissue Distribution
;
Methylmercury Compounds/analysis*
;
Chromatography, High Pressure Liquid/methods*
;
Sodium
5.Methylmercury toxic mechanism related to protein degradation and chemokine transcription.
Jin-Yong LEE ; Gi-Wook HWANG ; Akira NAGANUMA ; Masahiko SATOH
Environmental Health and Preventive Medicine 2020;25(1):30-30
Methylmercury is an environmental pollutant that causes neurotoxicity. Recent studies have reported that the ubiquitin-proteasome system is involved in defense against methylmercury toxicity through the degradation of proteins synthesizing the pyruvate. Mitochondrial accumulation of pyruvate can enhance methylmercury toxicity. In addition, methylmercury exposure induces several immune-related chemokines, specifically in the brain, and may cause neurotoxicity. This summary highlights several molecular mechanisms of methylmercury-induced neurotoxicity.
Animals
;
Chemokines
;
drug effects
;
metabolism
;
Humans
;
Methylmercury Compounds
;
toxicity
;
Mice
;
Neurotoxins
;
toxicity
;
Proteolysis
;
drug effects
;
Rats
;
Saccharomyces cerevisiae
;
drug effects
6.The Benefit Risk Assessment of Consumption of Marine Species Based on Benefit-Risk Analysis for Foods (BRAFO)-tiered Approach.
Yi Xiong GAO ; Hong Xia ZHANG ; Jing Guang LI ; Lei ZHANG ; Xin Wei YU ; Jia Lu HE ; Xiao Hong SHANG ; Yun Feng ZHAO ; Yong Ning WU
Biomedical and Environmental Sciences 2015;28(4):243-252
OBJECTIVETo assess the net health effect caused by the consumption of specific marine species based on Benefit-Risk Analysis for Foods (BRAFO)-tiered approach.
METHODSTwenty species were collected from the Zhoushan Archipelago, China. Concentrations of n-3 long-chain polyunsaturated fatty acids, methyl mercury (MeHg), and dioxin-like compounds (DLCs) in the samples were analyzed for benefit risk assessment based on BRAFO-tiered approach.
RESULTSBased on the BRAFO-tiered approach, reference scenario (no intake) and alternative scenario (intake of specific species of 200 g/week) were determined. The exposure to MeHg/DLCs via alternative scenario of all studied species did not exceed provisional tolerable weekly/monthly intake. However, the adult population with high DLCs exposure in China would significantly exceed the upper limit of DLCs via an additional alternative scenario of some species such as Auxis thazard. The results of deterministic computation showed that alternative scenario of all studied species generated clear net beneficial effects on death prevention and child IQ gain.
CONCLUSIONThe alternative scenario of all studied species could be recommended to population with average DLCs exposure, and the reference scenario of species with relatively high DLCs concentration could be recommended to population exposed to high DLCs.
Animals ; China ; Dioxins ; analysis ; Environmental Pollutants ; analysis ; Fatty Acids, Omega-3 ; analysis ; Fishes ; Humans ; Methylmercury Compounds ; analysis ; Risk Assessment ; Seafood ; analysis ; Species Specificity
7.Effect of Zhusha Anshen pill, cinnabar, HgS, HgCl2 and MeHg on gene expression of renal transporters in mice.
Yi SUI ; Hong YANG ; Xing-zhong TIAN ; Jie LIU ; Jing-zhen SHI
China Journal of Chinese Materia Medica 2015;40(3):506-510
OBJECTIVETo study the effect of Zhusha Anshen pill, cinnabar, HgS, HgCl2 and MeHg on the gene expression of renal transporters in mice.
METHODHealthy male mice were given equivalent physiological saline, Zhusha Anshen pill (1.8 g · kg(-1), containing 0.17 g · kg(-1) of mercury), cinnabar (0.2 g · kg(-1), containing 1.7 g · kg(-1) of mercury), high dose cinnabar (2 g · kg(-1), containing 1.7 g · kg(-1) of mercury), HgS (0.2 g · kg(-1), containing 0.17 g · kg(-1) of mercury), HgCl2 (0.032 g · kg(-1), containing 0. 024 g · kg(-1) of mercury), MeHg (0.026 g · kg(-1), containing 0.024 g · kg(-1) of mercury), once daily, for 30 d, measuring body mass gain. 30 days later, the mice were sacrificed. The mercury accumulation in kidneys was detected with atomic fluorescence spectrometer. Expressions of Oat1, Oat2, Oat3, Mrp2, Mrp4, Urat1 were detected with RT-PCR.
RESULTCompared with the normal control group, a significant accumulation of Hg in kidney in HgCl2 and MeHg groups was observed (P <0.05), but these changes were not found in other groups. Compared with normal control group, mRNA expressions of Oat1 and Oat2 were evidently lower in HgCl2 and MeHg groups, but mRNA expressions of Mrp2 were apparently higher in HgCl2 group (P <0.05), mRNA expression of Mrp4 was significant higher in HgCl2 and MeHg groups, and mRNA expression of Urat1 was apparently lower in MeHg group.
CONCLUSIONHgCl2 and MeHg groups show significant difference from the normal group in mercury accumulation in kidneys and gene expression of kidney transporters, but with no difference between other groups and the normal group. Compared with HgCl2 and MeHg, cinnabar and its compounds could cause lower renal toxicity to mice.
Animals ; Carrier Proteins ; genetics ; Drugs, Chinese Herbal ; toxicity ; Gene Expression ; drug effects ; Kidney ; drug effects ; metabolism ; Male ; Mercuric Chloride ; toxicity ; Mercury Compounds ; toxicity ; Methylmercury Compounds ; toxicity ; Mice ; Multidrug Resistance-Associated Proteins ; genetics ; Organic Anion Transport Protein 1 ; genetics ; Organic Anion Transporters, Sodium-Independent ; genetics
8.Environmental Mercury and Its Toxic Effects.
Kevin M RICE ; Ernest M WALKER ; Miaozong WU ; Chris GILLETTE ; Eric R BLOUGH
Journal of Preventive Medicine and Public Health 2014;47(2):74-83
Mercury exists naturally and as a man-made contaminant. The release of processed mercury can lead to a progressive increase in the amount of atmospheric mercury, which enters the atmospheric-soil-water distribution cycles where it can remain in circulation for years. Mercury poisoning is the result of exposure to mercury or mercury compounds resulting in various toxic effects depend on its chemical form and route of exposure. The major route of human exposure to methylmercury (MeHg) is largely through eating contaminated fish, seafood, and wildlife which have been exposed to mercury through ingestion of contaminated lower organisms. MeHg toxicity is associated with nervous system damage in adults and impaired neurological development in infants and children. Ingested mercury may undergo bioaccumulation leading to progressive increases in body burdens. This review addresses the systemic pathophysiology of individual organ systems associated with mercury poisoning. Mercury has profound cellular, cardiovascular, hematological, pulmonary, renal, immunological, neurological, endocrine, reproductive, and embryonic toxicological effects.
Body Burden
;
*Environmental Exposure
;
Environmental Pollutants/*toxicity
;
Humans
;
Methylmercury Compounds/*toxicity
;
Nervous System/*drug effects
;
Seafood/analysis
9.Toxic effects of methylmercury, arsanilic acid and danofloxacin on the differentiation of mouse embryonic stem cells into neural cells.
Seok Jin KANG ; Sang Hee JEONG ; Eun Joo KIM ; Young Il PARK ; Sung Won PARK ; Hyo Sook SHIN ; Seong Wan SON ; Hwan Goo KANG
Journal of Veterinary Science 2014;15(1):61-71
This study was performed to assess the neurotoxic effects of methylmercury, arsanilic acid and danofloxacin by quantification of neural-specific proteins in vitro. Quantitation of the protein markers during 14 days of differentiation indicated that the mouse ESCs were completely differentiated into neural cells by Day 8. The cells were treated with non-cytotoxic concentrations of three chemicals during differentiation. Low levels of exposure to methylmercury decreased the expression of GABAA-R and Nestin during the differentiating stage, and Nestin during the differentiated stage. In contrast, GFAP, Tuj1, and MAP2 expression was affected only by relatively high doses during both stages. Arsanilic acid affected the levels of GABA(A)-R and GFAP during the differentiated stage while the changes of Nestin and Tuj1 were greater during the differentiating stage. For the neural markers (except Nestin) expressed during both stages, danofloxacin affected protein levels at lower concentrations in the differentiated stage than the differentiating stage. Acetylcholinesterase activity was inhibited by relatively low concentrations of methylmercury and arsanilic acid during the differentiating stage while this activity was inhibited only by more than 40 microM of danofloxacin in the differentiated stage. Our results provide useful information about the different toxicities of chemicals and the impact on neural development.
Acetylcholinesterase/metabolism
;
Animals
;
Arsanilic Acid/*toxicity
;
Cell Differentiation/*drug effects
;
Embryonic Stem Cells/cytology/*drug effects
;
Environmental Pollutants/*toxicity
;
Fluorescent Antibody Technique
;
Fluoroquinolones/*toxicity
;
Gene Expression Regulation/drug effects
;
Methylmercury Compounds/*toxicity
;
Mice
;
Nerve Tissue Proteins/metabolism
;
Neurons/cytology/*drug effects
;
Tetrazolium Salts/metabolism
;
Thiazoles/metabolism
10.Analysis of Methylmercury Concentration in the Blood of Koreans by Using Cold Vapor Atomic Fluorescence Spectrophotometry.
Byoung Gwon KIM ; Eun Mi JO ; Gyeong Yeon KIM ; Dae Seon KIM ; Yu Mi KIM ; Rock Bum KIM ; Byung Seong SUH ; Young Seoub HONG
Annals of Laboratory Medicine 2012;32(1):31-37
BACKGROUND: Methylmercury is an organic form of mercury that is highly toxic to humans. Here, we present and establish a novel method to detect methylmercury concentrations in the blood of Koreans. METHODS: Methylmercury concentration was analyzed with an automated methylmercury analytic system (MERX, Brooks Rand Co., USA) using cold vapor atomic fluorescence spectrophotometry (CVAFS). A variety of biological materials were digested in methanolic potassium hydroxide solution. The analysis method was validated by examination of certified reference material (955c, National Institute of Standard and Technology, USA). We randomly selected 30 Korean adults (age 20 yr or older) to analyze total blood mercury and methylmercury concentrations. RESULTS: The detection limit and methylmercury recovery rate using this method were 0.1 pg/L and, 99.19% (range: 89.33-104.89%), respectively. The mean blood concentration of methylmercury was 4.54+/-2.15 microg/L (N=30). The mean proportion of methylmercury to the total mercury concentration was 78.27% (range: 41.37-98.80%). CONCLUSIONS: This study is the first report to analyze blood methylmercury concentration using CVAFS in Korea. We expect that this method will contribute to the evaluation of mercury exposure and the assessment of the toxicological impact of mercury in future studies.
Adult
;
Humans
;
Hydroxides/chemistry
;
Mercury/blood
;
Methylmercury Compounds/*blood
;
Potassium Compounds/chemistry
;
Reproducibility of Results
;
Republic of Korea
;
*Spectrophotometry, Atomic

Result Analysis
Print
Save
E-mail