1.Impact of Folic Acid on the Resistance of Non-small Cell Lung Cancer Cells to Osimertinib by Regulating Methylation of DUSP1.
Chinese Journal of Lung Cancer 2024;26(12):881-888
BACKGROUND:
Drug resistance is the main cause of high mortality of lung cancer. This study was conducted to investigate the effect of folic acid (FA) on the resistance of non-small cell lung cancer (NSCLC) cells to Osimertinib (OSM) by regulating the methylation of dual specificity phosphatase 1 (DUSP1).
METHODS:
The OSM resistant NSCLC cell line PC9R was establishd by gradually escalation of OSM concentration in PC9 cells. PC9R cells were randomly grouped into Control group, OSM group (5 μmol/L OSM), FA group (600 nmol/L FA), methylation inhibitor decitabine (DAC) group (10 μmol/L DAC), FA+OSM group (600 nmol/L FA+5 μmol/L OSM), and FA+OSM+DAC group (600 nmol/L FA+5 μmol/L OSM+10 μmol/L DAC). CCK-8 method was applied to detect cell proliferation ability. Scratch test was applied to test the ability of cell migration. Transwell assay was applied to detect cell invasion ability. Flow cytometry was applied to measure and analyze the apoptosis rate of cells in each group. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) method was applied to detect the expression level of DUSP1 mRNA in cells. Methylation specific PCR (MSP) was applied to detect the methylation status of the DUSP1 promoter region in each group. Western blot was applied to analyze the expression levels of DUSP1 protein and key proteins in the DUSP1 downstream mitogen-activated protein kinase (MAPK) signaling pathway in each group.
RESULTS:
Compared with the Control group, the cell OD450 values (48 h, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the OSM group were obviously decreased (P<0.05); the apoptosis rate, the methylation level of DUSP1, the expression of p38 MAPK protein, and the phosphorylation level of extracellular regulated protein kinases (ERK) were obviously increased (P<0.05); the cell OD450 values (48, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the DAC group were obviously increased (P<0.05); the apoptosis rate, the expression of p38 MAPK protein, the phosphorylation level of ERK, and the methylation level of DUSP1 were obviously reduced (P<0.05). Compared with the OSM group, the cell OD450 values (48, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the FA+OSM group were obviously decreased (P<0.05); the apoptosis rate, the methylation level of DUSP1, the expression of p38 MAPK protein, and the phosphorylation level of ERK were obviously increased (P<0.05). Compared with the FA+OSM group, the cell OD450 values (48, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the FA+OSM+DAC group were obviously increased; the apoptosis rate, the methylation level of DUSP1, the expression of p38 MAPK protein, and the phosphorylation level of ERK were obviously reduced (P<0.05).
CONCLUSIONS
FA may inhibit DUSP1 expression by enhancing DUSP1 methylation, regulate downstream MAPK signal pathway, then promote apoptosis, inhibit cell invasion and metastasis, and ultimately reduce OSM resistance in NSCLC cells.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Lung Neoplasms/genetics*
;
Dual Specificity Phosphatase 1/pharmacology*
;
Cell Proliferation
;
p38 Mitogen-Activated Protein Kinases/pharmacology*
;
Methylation
;
Apoptosis
;
Cell Line, Tumor
3.Research progress on the role and clinical significance of DNA methylation in early nutritional programming.
Acta Physiologica Sinica 2023;75(3):403-412
Early life nutritional environment is not only associated with the growth and development of children, but also affects the health of adults. Numerous epidemiological and animal studies suggest that early nutritional programming is an important physiological and pathological mechanism. DNA methylation is one of the important mechanisms of nutritional programming, which is catalyzed by DNA methyltransferase, a specific base of DNA covalently binds to a methyl group, to regulate gene expression. In this review, we summarize the role of DNA methylation in the "abnormal developmental planning" of key metabolic organs caused by excessive nutrition in early life, resulting in long-term obesity and metabolic disorders in the offspring, and explore the clinical significance of regulating DNA methylation levels through dietary interventions to prevent or reverse the occurrence of metabolic disorders in the early stage in a "deprogramming" manner.
Humans
;
Animals
;
Female
;
DNA Methylation
;
Epigenesis, Genetic
;
Clinical Relevance
;
Maternal Nutritional Physiological Phenomena
;
Metabolic Diseases
4.Research progress on regulation of N6-adenylate methylation modification in lipid metabolism disorders.
Shu-Ya CHEN ; An-Yu NI ; Qiu-Hui QIAN ; Jin YAN ; Xue-Dong WANG ; Hui-Li WANG
Acta Physiologica Sinica 2023;75(3):439-450
Lipid metabolism is a complex physiological process, which is closely related to nutrient regulation, hormone balance and endocrine function. It involves the interactions of multiple factors and signal transduction pathways. Lipid metabolism disorder is one of the main mechanisms to induce a variety of diseases, such as obesity, diabetes, non-alcoholic fatty liver disease, hepatitis, hepatocellular carcinoma and their complications. At present, more and more studies have found that the "dynamic modification" of N6-adenylate methylation (m6A) on RNA represents a new "post-transcriptional" regulation mode. m6A methylation modification can occur in mRNA, tRNA, ncRNA, etc. Its abnormal modification can regulate gene expression changes and alternative splicing events. Many latest references have reported that m6A RNA modification is involved in the epigenetic regulation of lipid metabolism disorder. Based on the major diseases induced by lipid metabolism disorders, we reviewed the regulatory roles of m6A modification in the occurrence and development of those diseases. These overall findings inform further in-depth investigations of the underlying molecular mechanisms regarding the pathogenesis of lipid metabolism disorders from the perspective of epigenetics, and provide reference for health prevention, molecular diagnosis and treatment of related diseases.
Humans
;
Methylation
;
Epigenesis, Genetic
;
Lipid Metabolism/genetics*
;
Lipid Metabolism Disorders/genetics*
;
Liver Neoplasms
;
RNA
5.Association Analysis Between Methylation of SCARB1 Gene Promoter and Coronary Heart Disease.
Wei LI ; Zhen-Hua WANG ; Peng SHI ; Song XUE
Acta Academiae Medicinae Sinicae 2023;45(3):405-409
Objective To explore the relationship between scavenger receptor class B member 1 (SCARB1) gene promoter methylation and the pathogenesis of coronary artery disease. Methods A total of 120 patients with coronary heart disease treated in Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine from December 2018 to May 2020 were selected as the case group,while 140 gender and age matched healthy participants were randomly selected as the control group for a case-control study.The methylation status was detected by high-throughput target sequencing after bisulfite converting,and the methylation of CpG sites in the promoter region of SCARB1 gene was compared between the two groups. Results The case group showed higher methylation level of SCARB1+67 and lower methylation level of SCARB1+134 than the control group (both P<0.001),and the differences remained statistically significant in men (both P<0.001) and women (both P<0.001).The overall methylation level in the case group was lower than that in the control group [(80.27±2.14)% vs.(81.11±1.27)%;P=0.006],while this trend was statistically significant only in men (P=0.002). Conclusion The methylation of SCARB1 gene promotor is associated with the pathogenesis and may participate in the occurrence and development of coronary heart disease.
Male
;
Humans
;
Female
;
Methylation
;
Case-Control Studies
;
China
;
Coronary Artery Disease/genetics*
;
Promoter Regions, Genetic
;
DNA Methylation
;
Scavenger Receptors, Class B/genetics*
6.Clinical Significance of SFRP1 Gene Methylation in Patients with Childhood Acute Lymphoblastic Leukemia.
Jing YAN ; Wen-Peng WANG ; Xuan LI ; Wei HAN ; Feng-Qi QI ; Ji-Zhao GAO
Journal of Experimental Hematology 2023;31(2):377-382
OBJECTIVE:
To investigate the clinical significance of SFRP1 gene and its methylation in childhood acute lymphoblastic leukemia (ALL) .
METHODS:
Methylation-specific PCR (MSP) was used to detect the methylation status of SFRP1 gene in bone marrow mononuclear cells of 43 children with newly diagnosed ALL before chemotherapy (primary group) and when the bone marrow reached complete remission d 46 after induction of remission chemotherapy (remission group), the expression of SFRP1 mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR), the expression of SFRP1 protein was detected by Western blot, and clinical data of children were collected, the clinical significance of SFRP1 gene methylation in children with ALL was analyze.
RESULTS:
The positive rate of SFRP1 gene promoter methylation in the primary group (44.19%) was significantly higher than that in the remission group (11.63%) (χ2=11.328, P<0.05). The relative expression levels of SFRP1 mRNA and protein in bone marrow mononuclear cells of children in the primary group were significantly lower than those in the remission group (P<0.05). Promoter methylation of SFRP1 gene was associated with risk level (χ2=15.613, P=0.000) and survival of children (χ2=6.561, P=0.010) in the primary group, children with SFRP1 hypermethylation had significantly increased risk and shortened event-free survival time, but no significant difference in other clinical data.
CONCLUSION
Hypermethylation of SFRP1 gene promoter may be involved in the development of childhood ALL, and its hypermethylation may be associated with poor prognosis.
Child
;
Humans
;
Clinical Relevance
;
DNA Methylation
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Bone Marrow/metabolism*
;
RNA, Messenger/metabolism*
;
Membrane Proteins/genetics*
;
Intercellular Signaling Peptides and Proteins/metabolism*
7.Research Progress of m6A Demethylase FTO and Its Inhibitors in Acute Myeloid Leukemia --Review.
Ze-Hao FANG ; Su-Ying ZHENG ; Wei-Ying FENG
Journal of Experimental Hematology 2023;31(3):902-906
Obesity-associated protein (FTO) is an important m6A demethylase that regulates RNA methylation modification and can promote the proliferation of acute myeloid leukemia(AML) cells. FTO regulates the methylation level of AML through multiple cellular signaling pathways such as FTO/RARA/ASB2, FTO/m6A/CEBPA, and PDGFRB/ERK, and participates in the occurrence, development, treatment and prognosis of AML. At present, studies have found that a variety of inhibitors targeting FTO have shown good anti-leukemia effects, and the study of FTO will provide new ideas for the treatment of AML. This review focus on the mechanism of action of FTO in AML and the research progress of FTO inhibitors in AML.
Humans
;
Methylation
;
Leukemia, Myeloid, Acute/genetics*
;
Prognosis
;
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism*
8.Research Progress on Gene Mutation and CHIP in Pathogenesis of MDS --Review.
Journal of Experimental Hematology 2023;31(3):907-910
With the development of molecular biology techniques, the people's understanding of myelodysplastic syndromes (MDS) has greatly improved, a heterogeneous hematopoietic pre-malignant disorder of the stem cells. Gene mutations include RNA splicing, DNA methylation, chromosome modification, transcription factors, signal transduction kinases, RAS pathways, cohesion complexes, DNA repair, etc. Gene mutation is the determinant of diagnostic typing and therapeutic efficacy of MDS. The new concepts of CHIP and ICUS have aroused people's attention to the elderly patients with clonal hematopoiesis and non-clonal cytopenia but without MDS characteristics, who have the possibility of high-risk transformation to MDS and leukemia. In order to better understand the pathogenesis of MDS, the significance of gene mutations, CHIP and ICUS in the diagnosis and prognosis of MDS were reviewed in this paper.
Aged
;
Humans
;
DNA Methylation
;
Mutation
;
Myelodysplastic Syndromes/pathology*
;
Prognosis
;
Signal Transduction
9.Genome-wide DNA methylation and transcriptome expression profiles of peripheral blood mononuclear cells in patients with systemic sclerosis with interstitial lung disease.
Yanli XIE ; Hongjun ZHAO ; Hui LUO ; Xiaoxia ZUO ; Quanzhen LI ; Sijia LIU
Journal of Central South University(Medical Sciences) 2023;48(6):829-836
OBJECTIVES:
This study aims to investigate the genome-wide DNA methylation and transcriptome expression profiles of peripheral blood mononuclear cells (PBMCs) in patients with systemic sclerosis (SSc) with interstitial lung disease (ILD), and to analyze the effects of DNA methylation on Wnt/β-catenin and chemokine signaling pathways.
METHODS:
PBMCs were collected from 19 patients with SSc (SSc group) and 18 healthy persons (control group). Among SSc patients, there were 10 patients with ILD (SSc with ILD subgroup) and 9 patients without ILD (SSc without ILD subgroup). The genome-wide DNA methylation and gene expression level were analyzed by using Illumina 450K methylation chip and Illumina HT-12 v4.0 gene expression profiling chip. The effect of DNA methylation on Wnt/β-catenin and chemokine signal pathways was investigated.
RESULTS:
Genome-wide DNA methylation analysis identified 71 hypermethylated CpG sites and 98 hypomethylated CpG sites in the SSc with ILD subgroup compared with the SSc without ILD subgroup. Transcriptome analysis distinguished 164 upregulated genes and 191 downregulated genes in the SSc with ILD subgroup as compared with the SSc without ILD subgroup. In PBMCs of the SSc group, 35 genes in Wnt/β-catenin signaling pathway were hypomethylated, while frizzled-1 (FZD1), mitogen-activated protein kinase 9 (MAPK9), mothers against DPP homolog 2 (SMAD2), transcription factor 7-like 2 (TCF7L2), and wingless-type MMTV integration site family, member 5B (WNT5B) mRNA expressions were upregulated as compared with the control group (all P<0.05). Compared with the SSc without ILD subgroup, the mRNA expressions of dickkopf homolog 2 (DKK2), FZD1, MAPK9 were upregulated in the SSc with ILD subgroup, but the differences were not statistically significant (all P>0.05). In PBMCs of the SSc group, 38 genes in chemokine signaling pathway were hypomethylated, while β-arrestin 1 (ARRB1), C-X-C motif chemokine ligand 10 (CXCL10), C-X-C motif chemokine ligand 16 (CXCL16), FGR, and neutrophil cytosolic factor 1C (NCF1C) mRNA expressions were upregulated as compared with the control group (all P<0.05). Compared with the SSc without ILD subgroup, the mRNA expressions of ARRB1, CXCL10, CXCL16 were upregulated in the SSc with ILD subgroup, but the differences were not statistically significant (all P>0.05).
CONCLUSIONS
There are differences in DNA methylation and transcriptome profiles between SSc with ILD and SSc without ILD. The expression levels of multiple genes in Wnt/β- catenin and chemokine signaling pathways are upregulated, which might be associatea with the pathogenesis of SSc.
Humans
;
DNA Methylation
;
Transcriptome
;
beta Catenin
;
Leukocytes, Mononuclear
;
Ligands
;
DNA
;
RNA, Messenger/genetics*
10.Age Estimation Based on DNA Methylation and Its Application Prospects in Forensic Medicine.
Zi-Wei WANG ; Qian-Nan XU ; Cheng-Tao LI ; Xi-Ling LIU
Journal of Forensic Medicine 2023;39(1):72-82
With the improvement of DNA methylation detection techniques, studies on age-related methylation sites have found more age-specific ones across tissues, which improves the sensitivity and accuracy of age estimation. In addition, the establishment of various statistical models also provides a new direction for the age estimation of tissues from different sources. This review summarizes the related studies of age estimation based on DNA methylation from the aspects of detection technology, age-related cytosine phosphate guanine site and model selection in recent years.
DNA Methylation
;
Forensic Genetics/methods*
;
CpG Islands
;
Forensic Medicine

Result Analysis
Print
Save
E-mail