1.Rhizosphere bacterial metabolism of plants growing in landfill cover soil regulates biodegradation of chlorobenzene.
Shangjie CHEN ; Li DONG ; Juan XIONG ; Baozhong MOU ; Zhilin XING ; Tiantao ZHAO
Chinese Journal of Biotechnology 2025;41(6):2451-2466
The regulation of rhizosphere bacterial community structure and metabolism by plants in municipal solid waste landfills is a key to enhancing the biodegradation of chlorobenzene (CB). In this study, we employed biodiversity and metabolomics methods to systematically analyze the mechanisms of different plant species in regulating the rhizosphere bacterial community structure and metabolic features and then improved the methane (CH4) oxidation and CB degradation capacity. The results showed that the rhizosphere soil of Rumex acetosa exhibited the highest CH4 oxidation and CB degradation capacity of 0.08 g/(kg·h) and 1.72×10-6 g/(L·h), respectively, followed by the rhizosphere soil of Amaranthus spinosus L., with the rhizosphere soil of Broussonetia papyrifera showing the weakest activity. Rumex acetosa promoted the colonization of Methylocaldum in the rhizosphere, and the small-molecule organic amine, such as triethylamine and N-methyl-aniline, secreted from the roots of this plant enhanced the tricarboxylic acid cycle and nicotinamide metabolism, thereby increasing microbial activity and improving CH4 and CB degradation efficiency. Conversely, cinnamic acid and its derivatives secreted by Broussonetia papyrifera acted as autotoxins, inhibiting microbial activity and exacerbating the negative effects of salt stress on key microbes such as methanotrophs. This study probed into the mechanisms of typical plants growing in landfill cover soil in regulating bacterial ecological functions, offering theoretical support and practical guidance for the plant-microbe joint control of landfill gas pollution.
Biodegradation, Environmental
;
Rhizosphere
;
Soil Microbiology
;
Waste Disposal Facilities
;
Chlorobenzenes/metabolism*
;
Bacteria/metabolism*
;
Soil Pollutants/metabolism*
;
Methane/metabolism*
;
Plant Roots/microbiology*
;
Amaranthus/microbiology*
;
Soil
2.Differential analysis of biogas production in simulated experiments of aquitard layers in coal seam fire zones.
Daping XIA ; Yunxia NIU ; Jijun TIAN ; Haichao WANG ; Donglei JIA ; Dan HUANG ; Zhenzhi WANG ; Weizhong ZHAO
Chinese Journal of Biotechnology 2025;41(8):3064-3080
To explore the differences in biological gas production in the waterlogged zone of a coal seam fire-affected area, in this study the in-situ gas production experiment was conducted with the mine water from aquitard layers in coal seam fire zones in Xinjiang. The results showed that the biogas production first increased and then decreased with the increase in distance, and the highest gas production reached 216.55 mL. The changes in key metabolic pathways during the anaerobic fermentation of coal were analyzed, which showed that as the distance from the aquitard layer in the coal seam fire zone increased, the methanogenesis pathways gradually shifted from acetic acid decarboxylation and carbon dioxide reduction to acetic acid decarboxylation and methylamine methanogenesis. The significant variability in the in-situ mine water reservoir conditions contributed to the differences. In addition, the reservoir pressure and temperature increased as the distance from the fire zone became longer, and the salinity of the farthest mine water in the reverse fault was the highest due to the lack of groundwater supply. Pearson correlation analysis revealed significant correlations of microbial communities with key functional genes and the types and concentrations of ions. The ions significantly influencing microbial enzymatic metabolic activities included Al3+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Mg2+, PO43-, and Mo6+. The differences in metabolic pathways were attributed to the integrated effects of a co-occurring environment with multiple ions. The gas production simulation experiments and metagenomic analyses provide data support for the practical application of in-situ biogas experiments, laying a foundation for engineering applications.
Biofuels
;
Coal
;
Methane/biosynthesis*
;
Fires
;
Groundwater
;
Coal Mining
;
Fermentation
;
China
;
Anaerobiosis
3.Microorganism-mediated arsenic reduction and its environmental effects.
Teng MAO ; Guoliang CHEN ; Zhihui QU
Chinese Journal of Biotechnology 2024;40(12):4480-4492
Arsenic (As) is a common toxic pollution element. The microorganism-mediated transformation of arsenic forms is an important part in the biogeochemical cycle of As. In the various microbial metabolic processes involving As, the coupling reduction of As has a great impact on the environment and is a process that is easily overlooked. From the biogeochemical cycle of As, this review introduces the microorganism-mediated methane oxidation, anaerobic ammonium oxidation, and iron (Fe)-sulfur (S) oxidation coupled with As reduction. Organic matter, pH, and redox potential are the main factors affecting the coupling reduction. After the coupling reduction, the toxicity and migration of As are greatly enhanced, which may increase the risk of As pollution. Therefore, it is of great significance to clarify the influences of carbon, nitrogen, Fe, S and other elements on the coupling process and explore more microbial processes coupled with As reduction for the prevention and control of As pollution.
Arsenic/metabolism*
;
Oxidation-Reduction
;
Bacteria/metabolism*
;
Environmental Pollutants/metabolism*
;
Biodegradation, Environmental
;
Methane/metabolism*
;
Iron/metabolism*
;
Ammonium Compounds/metabolism*
4.Engineering application of aerobic methane oxidizing bacteria (methanotrophs): a review.
Cheng YAN ; Juan MEI ; Youcai ZHAO
Chinese Journal of Biotechnology 2022;38(4):1322-1338
Aerobic methane oxidizing bacteria (methanotrophs) can use methane as carbon source and energy source, eliminating 10%-20% of global methane. Methanotrophs can also effectively synthesize valuable methane-derived products. This article introduced the methane oxidizing mechanism of methanotrophs, and summarized the practical application and research hotspots of methanotrophs in the field of methane emission reduction in the landfill, ventilation air methane mitigation in coal mines, valuable chemicals biosynthesis, as well as oil and gas reservoir exploration. Main factors influencing the pollutant removal and the biosynthesis efficiency in various applications were also discussed. Based on the study of large-scale cultivation of methanotrophs, some measures to benefit the application and promotion of aerobic methane oxidizing biotechnology were proposed. This includes investigating the effect of intermediate metabolites on methanotrophs activity and population structure, and exploiting economical and efficient alternative culture media and culture techniques.
Biotechnology
;
Carbon
;
Culture Media/chemistry*
;
Methane/metabolism*
;
Methylococcaceae/metabolism*
;
Oxidation-Reduction
5.Transformation mechanism of carbon tetrachloride and the associated micro-ecology in landfill cover, a typical functional layer zone.
Yongqiong WANG ; Zhilin XING ; Shangjie CHEN ; Xia SU ; Kun CAO ; Ludan CAO ; Shushu LIAO ; Langlang DONG ; Shuo AI ; Tiantao ZHAO
Chinese Journal of Biotechnology 2022;38(5):1874-1888
Landfill is one of the important sources of carbon tetrachloride (CT) pollution, and it is important to understand the degradation mechanism of CT in landfill cover for better control. In this study, a simulated landfill cover system was set up, and the biotransformation mechanism of CT and the associated micro-ecology were investigated. The results showed that three stable functional zones along the depth, i.e., aerobic zone (0-15 cm), anoxic zone (15-45 cm) and anaerobic zone (> 45 cm), were generated because of long-term biological oxidation in landfill cover. There were significant differences in redox condition and microbial community structure in each zone, which provided microbial resources and favorable conditions for CT degradation. The results of biodegradation indicated that dechlorination of CT produced chloroform (CF), dichloromethane (DCM) and Cl- in anaerobic and anoxic zones. The highest concentration of dechlorination products occurred at 30 cm, which were degraded rapidly in aerobic zone. In addition, CT degradation rate was 13.2-103.6 μg/(m2·d), which decreased with the increase of landfill gas flux. The analysis of diversity sequencing revealed that Mesorhizobium, Thiobacillus and Intrasporangium were potential CT-degraders in aerobic, anaerobic and anoxic zone, respectively. Moreover, six species of dechlorination bacteria and eighteen species of methanotrophs were also responsible for anaerobic transformation of CT and aerobic degradation of CF and DCM, respectively. Interestingly, anaerobic dechlorination and aerobic transformation occurred simultaneously in the anoxic zone in landfill cover. Furthermore, analysis of degradation mechanism suggested that generation of stable anaerobic-anoxic-aerobic zone by regulation was very important for the harmless removal of full halogenated hydrocarbon in vadose zone, and the increase of anoxic zone scale enhanced their removal. These results provide theoretical guidance for the removal of chlorinated pollutants in landfills.
Bacteria/metabolism*
;
Biodegradation, Environmental
;
Carbon Tetrachloride/metabolism*
;
Methane/metabolism*
;
Waste Disposal Facilities
6.The relationship between methane production metabolic flux and microorganisms in a microbial electrolytic cell coupled anaerobic digestion.
Hongzhou LIU ; Sixia YANG ; Nan WANG ; Haibo LIU ; Jianchang LI
Chinese Journal of Biotechnology 2022;38(5):1889-1902
In this study, voltage was used as a disturbance factor to investigate the relationship between microbial community and methane (CH4) production flux in a microbial electrolytic cell coupled anaerobic digestion (MEC-AD). Metabolic flux analysis (MFA) was used to explore the relationship between the CH4 metabolic flux produced and the microbes. The results showed that both methane production flux and hydrogen production flux changed significantly upon voltage disturbance, while the voltage disturbance had little effect on acetic acid production flux. The maximum CH4 production flux under 0.6 V disturbance was 0.522±0.051, which increased by 77% and 32%, respectively, compared with that of the control group under 1.0 V (0.295±0.013) and under 1.4 V (0.395±0.029). In addition, an average of 15.7%±2.9% of H2 (flux) was used to reduce CO2 to produce CH4 and acetic acid, and an average of 27.7%±6.9% of acetic acid (flux) was converted to CH4. Moreover, the abundance of Lachnospiraceae significantly affected the flux of acetic acid. The flux of CH4 production is positively correlated with the abundances of Petrimonas, Syntrophomonas, Blvii28, and Acinetobacter, and negatively correlated with the abundances of Tuzzerella and Sphaerochaeta. The species that affected the flux of H2 and CH4 were similar, mostly belonging to Bacteroides, Clostridium, Pseudomonas and Firmicutes. Furthermore, the interspecies interaction is also an important factor affecting the MEC-AD methanogenesis flux.
Acetates
;
Anaerobiosis
;
Bioreactors
;
Electrolysis
;
Methane
7.Strategies for Collection and Analysis of Samples in Simple Asphyxiant Gas Acute Poisoning Death Cases.
Ping XIANG ; Ning-Guo LIU ; Bao-Hua SHEN ; Huo-Sheng QIANG ; Min SHEN
Journal of Forensic Medicine 2022;38(4):507-514
At present, the death cases of simple asphyxiant gas acute poisoning are increasing sharply. Common asphyxiant gases in death cases include nitrogen, helium, carbon dioxide, methane, propane, laughing gas, etc. Simple asphyxiant gas has no affinity for biological matrices and escapes quickly, which puts forward new requirements for autopsy procedures, selection and collection of samples, laboratory analysis and identification. This paper reviews the research and development process of death cases caused by simple asphyxiant gas acute poisoning and put forwards the collection and analysis strategy of the samples in such cases. The most valuable biological samples in such cases should be lung tissues associated with the airways, followed by brain tissue and cardiac blood. Gaseous samples from the esophageal cavity, tracheal cavity, pulmonary bronchi, gastric and cardiac areas are also recommended as valuable samples. In the case of postmortem examination, the gas should be injected into gas sample bag directly. Biological materials such as tissue and blood should be directly sealed in head-space vials and analyzed by using the headspace gas chromatography-mass spectrometry.
Carbon Dioxide/analysis*
;
Autopsy
;
Gas Chromatography-Mass Spectrometry
;
Methane/analysis*
;
Nitrogen
8.Methanol dehydrogenase, a key enzyme of one-carbon metabolism: a review.
Liwen FAN ; Yu WANG ; Ping ZHENG ; Jibin SUN
Chinese Journal of Biotechnology 2021;37(2):530-540
One-carbon compounds such as methanol and methane are cheap and readily available feedstocks for biomanufacturing. Oxidation of methanol to formaldehyde catalyzed by methanol dehydrogenase (MDH) is a key step of microbial one-carbon metabolism. A variety of MDHs that depend on different co-factors and possess different enzymatic properties have been discovered from native methylotrophs. Nicotinamide adenine dinucleotide (NAD)-dependent MDHs are widely used in constructing synthetic methylotrophs, whereas this type of MDH usually suffers from low methanol oxidation activity and low affinity to methanol. Consequently, methanol oxidation is considered as a rate-limiting step of methanol metabolism in synthetic methylotrophs. To accelerate methanol oxidation, thereby improving the methanol utilization efficiency of synthetic methylotrophs, massive researches have focused on discovery and engineering of MDHs. In this review, we summarize the ongoing efforts to discover, characterize, and engineer various types of MDHs as well as the applications of MDHs in synthetic methylotrophs. Directed evolution of MDH and construction of multi-enzyme complexes are described in detail. In the future prospective part, we discuss the potential strategies of growth-coupled protein evolution and rational protein design for acquisition of superior MDHs.
Alcohol Oxidoreductases/genetics*
;
Carbon
;
Methane
;
Methanol
9.Bioconversion of methane by metabolically engineered methanotrophs.
Chinese Journal of Biotechnology 2021;37(3):816-830
Due to abundant availability of shale gas and biogas, methane has been considered as one of the most potential carbon sources for industrial biotechnology. Methanotrophs carrying the native methane monooxygenase are capable of using methane as a sole energy and carbon source, which provides a novel strategy for reducing greenhouse gas emission and substituting edible substrates used in bioconversion processes. With the rapid development of genetic engineering tools and biosynthesis techniques, various strategies for improving the efficiency of methane bioconversion have been achieved to produce a variety of commodity bio-based products. Herein, we summarize several important aspects related with methane utilization and metabolic engineering of methanotrophs, including the modification of methane oxidation pathways, the construction of efficient cell factories, and biosynthesis of chemicals and fuels. Finally, the prospects and challenges of the future development of methane bioconversion are also discussed.
Biofuels
;
Biotechnology
;
Metabolic Engineering
;
Methane
;
Oxidation-Reduction
10.Microorganisms in the typical anaerobic digestion system of organic solid wastes: a review.
Xingsheng YANG ; Shang WANG ; Qing HE ; Zhujun WANG ; Zhaojing ZHANG ; Chengying JIANG ; Liping MA ; Xianwei LIU ; Baolan HU ; Yongmei LI ; Ye DENG
Chinese Journal of Biotechnology 2021;37(10):3425-3438
The facultative anaerobic and strict anaerobic microorganisms enriched and acclimated during the anaerobic digestion process are crucial for the efficiency of the anaerobic digestion system. Most of the problems encountered during running anaerobic digestion processes could be effectively improved via stimulation of microbial metabolic activity. Benefited from the rapid development of microbiome techniques, deeper insights into the microbial diversity in anaerobic digestion systems, e.g. the microbe-microbe interactions and microbe-environment interactions, have been gained. A complex and intricate metabolic network exists in the anaerobic digestion system of solid organic wastes. However, little is known about these interactions and the underlying mechanisms. This review briefly summarized the representative interactions between microbial communities during anaerobic digestion process discovered to date. In addition, typical issues encountered during the anaerobic digestion of solid organic wastes and how microbes can tackle and alleviate these issues were discussed. Finally, future priorities on microbiome research were proposed based on present contribution of microbiome analysis in anaerobic digestion system.
Anaerobiosis
;
Bioreactors
;
Methane
;
Microbial Interactions
;
Microbiota
;
Solid Waste

Result Analysis
Print
Save
E-mail