1.Preparation and application of conductive fiber coated with liquid metal.
Chengfeng LIU ; Jiabo TANG ; Ming LI ; Shihao ZHANG ; Yang ZOU ; Yonggang LYU
Journal of Biomedical Engineering 2025;42(4):724-732
Flexible conductive fibers have been widely applied in wearable flexible sensing. However, exposed wearable flexible sensors based on liquid metal (LM) are prone to abrasion and significant conductivity degradation. This study presented a high-sensitivity LM conductive fiber with integration of strain sensing, electrical heating, and thermochromic capabilities, which was fabricated by coating eutectic gallium-indium (EGaIn) onto spandex fibers modified with waterborne polyurethane (WPU), followed by thermal curing to form a protective polyurethane sheath. This fiber, designated as Spandex/WPU/EGaIn/Polyurethane (SWEP), exhibits a four-layer coaxial structure: spandex core, WPU modification layer, LM conductive layer, and polyurethane protective sheath. The SWEP fiber had a diameter of (458.3 ± 10.4) μm, linear density of (2.37 ± 0.15) g/m, and uniform EGaIn coating. The fiber had excellent conductivity with an average value of (3 716.9 ± 594.2) S/m. The strain sensing performance was particularly noteworthy. A 5 cm × 5 cm woven fabric was fabricated using polyester warp yarns and SWEP weft yarns. The fabric exhibited satisfactory moisture permeability [(536.06 ± 33.15) g/(m 2·h)] and maintained stable thermochromic performance after repeated heating cycles. This advanced conductive fiber development is expected to significantly promote LM applications in wearable electronics and smart textile systems.
Wearable Electronic Devices
;
Polyurethanes/chemistry*
;
Electric Conductivity
;
Gallium/chemistry*
;
Metals/chemistry*
2.Latest research progress of rare earth-magnesium alloys in orthopedics.
Zhengming SUN ; Kun ZUO ; Xinke ZHU ; Hao YUE ; Zhengchao GAO
Journal of Southern Medical University 2025;45(2):437-442
Due to their good properties of elastic modulus, degradability and ability to promote bone repair, magnesium alloys have become a research hotspot in research of orthopedic implants. Nevertheless, most of the biomedical magnesium alloys currently available fail to meet the requirements in orthopedics because of their rapid degradation after implantation. Rare earth-magnesium alloys possess excellent corrosion resistance and are expected to become important materials as clinical orthopedic implants. This review summarizes the recent progress in studies of the physiological functions of rare earth elements, the effects of supplementation of rare earth elements on biomechanical properties and the in vitro and in vivo biocompatibility of magnesium alloys, and their contribution to tendon-bone healing, addressing also the current clinical orthopedic applications of different rare earth-magnesium alloys, challenges, and future strategies for improving these alloys.
Alloys/chemistry*
;
Magnesium/chemistry*
;
Metals, Rare Earth/chemistry*
;
Humans
;
Biocompatible Materials
;
Prostheses and Implants
3.Progress in research and development of biodegradable metallic vascular stents.
Yan YANG ; Zhenfeng ZHANG ; Junwei WANG ; Keyun FU ; Dongyang LI ; Hao HE ; Chang SHU
Journal of Central South University(Medical Sciences) 2024;49(11):1861-1868
Vascular stents are an essential tool in cardiovascular interventional therapy, and their demand is growing with the increasing incidence of cardiovascular diseases. Compared with permanent stents, which are prone to in-stent restenosis, and drug-eluting stents, which may cause late stent thrombosis, biodegradable stents offer advantages. After providing early radial support to prevent elastic recoil, biodegradable stents gradually degrade, allowing the vessel to regain its natural physiological contractility and undergo positive remodeling. A review of the current mainstream biodegradable metal stents, magnesium-based, iron-based, and zinc-based alloys, shows promising findings in both preclinical and clinical research. Magnesium-based stents exhibit good operability and low thrombosis rates, but their limitations include rapid degradation, hydrogen evolution, and significant pH changes in the microenvironment. Iron-based stents demonstrate excellent mechanical strength, formability, biocompatibility, and hemocompatibility, but their slow corrosion rate hampers broader clinical application; accelerating degradation remains key. Zinc-based alloys have a moderate degradation rate but relatively low mechanical strength; enhancing stent strength by alloying with other elements is the main improvement direction for zinc-based stents.
Humans
;
Absorbable Implants
;
Stents
;
Alloys/chemistry*
;
Magnesium/chemistry*
;
Biocompatible Materials/chemistry*
;
Zinc/chemistry*
;
Drug-Eluting Stents
;
Iron/chemistry*
;
Metals/chemistry*
4.Research progress in the adsorption of heavy metal ions from wastewater by modified biochar.
Jing HONG ; Yongyong DAI ; Qijun NIE ; Zhiqiang LIAO ; Liangcai PENG ; Dan SUN
Chinese Journal of Biotechnology 2024;40(12):4467-4479
The rapid development of modern industries is accompanied with the aggravating water heavy metal pollution, which poses a potential threat to the aquatic environment and the health of local populations. As an efficient and economical adsorbent, biochar demonstrates the adsorption capacity for heavy metal ions and its adsorption capacity is significantly enhanced after modification. Therefore, biochar can effectively mitigate environmental pollution. By reviewing the existing studies, we summarize the modification methods of biochar, compare the advantages and disadvantages of physical, biological, and chemical modification methods, analyze the effects of modification on the adsorption capacity of biochar for heavy metal ions, and expound the modification mechanism of biochar. On this basis, this article puts forward the future research directions of the application of biochar in treating coexisting pollutants, aiming to provide a reference for the application of biochar in the purification of heavy metal-containing wastewater.
Charcoal/chemistry*
;
Metals, Heavy
;
Adsorption
;
Wastewater/chemistry*
;
Water Pollutants, Chemical/chemistry*
;
Water Purification/methods*
;
Heavy Ions
;
Waste Disposal, Fluid/methods*
5.Symbiosis between hyperaccumulators and arbuscular mycorrhizal fungi and their synergistic effect on the absorption and accumulation of heavy metals: a review.
Li WANG ; Gen WANG ; Fang MA ; Yongqiang YOU
Chinese Journal of Biotechnology 2021;37(10):3604-3621
The remediation of heavy-metal (HM) contaminated soil using hyperaccumulators is one of the important solutions to address the inorganic contamination widely occurred worldwide. Hyperaccumulators are able to hyperaccumulate HMs, but their planting, growth, and extraction capacities are greatly affected by HM stress. The application of arbuscular mycorrhizal fungi (AMF) enhances the function of hyperaccumulators by combining the functional advantages of both, improving the efficiency of remediation, shortening the remediation cycle, and maintaining the stability and persistence of the remediation. Thus, the combined use of AMF with hyperaccumulators has broad prospects for application in the management of increasingly complex and severe HM pollution. This review starts by defining the concept of hyperaccumulators, followed by describing the typical hyperaccumulators that were firstly reported in China as well as those known to form symbioses with AMF. This review provides a systematic and in-depth discussion of the effects of AMF on the growth of hyperaccumulators, as well as the absorption and accumulation of HMs, the effects and mechanism on the hyperaccumulator plus AMF symbiosis to absorb and accumulate HMs. AMF enhances the function of hyperaccumulators on the absorption and accumulation of HMs by regulating the physicochemical and biological conditions in the plant rhizosphere, the situation of elements homeostasis, the physiological metabolism and gene expression. Moreover, the symbiotic systems established by hyperaccumulators plus AMF have the potential to combine their abilities to remediate HMs-contaminated habitat. Finally, challenges for the combined use of remediation technologies for hyperaccumulator plus AMF symbiosis and future directions were prospected.
Biodegradation, Environmental
;
Metals, Heavy
;
Mycorrhizae/chemistry*
;
Plant Roots/chemistry*
;
Soil Pollutants
;
Symbiosis
6.Physiological and enrichment characteristics of Paulownia fortunei seedlings under zinc, cadmium and their combined stress.
Xiuhong ZHU ; Hongmei CHENG ; Liuyang JI ; Guangxin RU ; Zhulin ZHAO ; Yaoqi CAI ; Daoyuan WEN
Chinese Journal of Biotechnology 2021;37(7):2463-2473
The hydroponic culture test method was used to study the physiological and biochemical responses of Paulownia fortunei seedlings under Zn stress, Cd stress, and combined Zn and Cd stress as well as changes in the enrichment and transfer characteristics of heavy metals. Under single and combined heavy metal stress, the biomass, plant height, and peroxidase (POD) activity of P. fortunei decreased as the treatment concentration increased. Combined Zn and Cd affected adversely plant height and biomass. As the concentration of Zn increased when applied alone, the chlorophyll content and catalase (CAT) activity of P. fortunei first increased and then decreased, the superoxide dismutase (SOD) activity increased, and the aboveground malondialdehyde (MDA) content first decreased and then increased. As the concentration of Cd increased when applied alone, chlorophyll content and CAT activity increased, and SOD activity and aboveground MDA content first increased and then decreased. Under both Cd and Zn, the physiological response was more complex. Cd in the seedlings of P. fortunei was concentrated in the root. In contrast, Zn was concentrated in the upper part of the ground, and its transfer coefficient was greater than 1.00. Thus, the addition of Zn promotes the transfer of heavy metals to the above-ground portions of plants. Generally, P. fortunei can effectively promote ecological restoration under complex forms of heavy metal pollution.
Cadmium
;
Chlorophyll
;
Metals, Heavy
;
Plant Roots/chemistry*
;
Seedlings
;
Soil Pollutants
;
Stress, Physiological
;
Superoxide Dismutase
;
Zinc
8.Exposure profile of mercury, lead, cadmium, arsenic, antimony, copper, selenium and zinc in maternal blood, cord blood and placenta: the Tohoku Study of Child Development in Japan.
Miyuki IWAI-SHIMADA ; Satomi KAMEO ; Kunihiko NAKAI ; Kozue YAGINUMA-SAKURAI ; Nozomi TATSUTA ; Naoyuki KUROKAWA ; Shoji F NAKAYAMA ; Hiroshi SATOH
Environmental Health and Preventive Medicine 2019;24(1):35-35
BACKGROUND:
The effects of prenatal exposure to toxic elements on birth outcomes and child development have been an area of concern. This study aimed to assess the profile of prenatal exposure to toxic elements, arsenic (As), bismuth (Bi), cadmium (Cd), mercury (total mercury (THg), methylmercury (MHg), inorganic mercury (IHg)), lead (Pb), antimony (Sb) and tin (Sn), and essential trace elements, copper (Cu), selenium (Se) and zinc (Zn), using the maternal blood, cord blood and placenta in the Tohoku Study of Child Development of Japan (N = 594-650).
METHODS:
Inductively coupled plasma mass spectrometry was used to determine the concentrations of these elements (except mercury). Levels of THg and MeHg were measured using cold vapour atomic absorption spectrophotometry and a gas chromatograph-electron capture detector, respectively.
RESULTS:
Median concentrations (25th-75th) of As, Cd, Pb, Sb, Sn and THg in the maternal blood were 4.06 (2.68-6.81), 1.18 (0.74-1.79), 10.8 (8.65-13.5), 0.2 (0.06-0.40) and 0.2 (0.1-0.38) ng mL and 5.42 (3.89-7.59) ng g, respectively. Median concentrations (25th-75th) of As, Cd, Pb, Sb, Sn and THg in the cord blood were 3.68 (2.58-5.25), 0.53 (0.10-1.25), 9.89 (8.02-12.5), 0.39 (0.06-0.92) and 0.2 (0.2-0.38) ng mL and 9.96 (7.05-13.8) ng g, respectively.
CONCLUSIONS
THg and Sb levels in the cord blood were twofold higher than those in the maternal blood. Cord blood to maternal blood ratios for As, Cd and Sb widely varied between individuals. To understand the effects of prenatal exposure, further research regarding the variations of placental transfer of elements is necessary.
Adult
;
Female
;
Fetal Blood
;
chemistry
;
Humans
;
Japan
;
Maternal Exposure
;
statistics & numerical data
;
Maternal-Fetal Exchange
;
Metals
;
blood
;
Placenta
;
chemistry
;
Pregnancy
;
blood
;
Trace Elements
;
blood
;
Urban Health
9.Distribution and accumulation of inorganic elements in Ligusticum chuanxiong.
Li ZHOU ; Man-Xi ZHAO ; Sheng WANG ; Chuan-Zhi KANG ; Lu-Qi HUANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2019;44(9):1793-1798
Aiming at the phenomenon of heavy metal Cd exceeding the standard of Chuanxiong medicinal materials,the accumulation of 12 inorganic elements,including heavy metals,in Ligusticum chuanxiong was studied in this paper. It was found that the contents and distribution of most inorganic elements in the stems and leaves of L. chuanxiong were higher than those in the rhizomes at seedling and shooting stages. The content of most elements in rhizome reached the highest at harvest stage,and the distribution ratio of some elements in rhizome was higher than that in stem and leaf at harvest stage. But rhizome,stem and leaf of L. chuanxiong have relatively stable absorption capacity and enrichment effect on different elements,and are less affected by growth period and position. Rhizomes and stems and leaves of L. chuanxiong were enriched with Cd,and stems and leaves also accumulated Pb at seedling stage and stem stage. The absorption capacity of Pb in stems and leaves of L. chuanxiong was higher than that of rhizomes,and the ability of absorbing Cd was less than that of rhizomes at harvest time. The total uptake of Cd and Pb by L. chuanxiong decreased with the prolongation of growth time,but the proportion of Cd and Pb in rhizome increased,so that the content of Cd and Pb increased with the prolongation of growth time.
Cadmium
;
analysis
;
Drugs, Chinese Herbal
;
chemistry
;
Ligusticum
;
chemistry
;
Metals, Heavy
;
analysis
;
Plant Leaves
;
chemistry
;
Plant Stems
;
chemistry
;
Rhizome
;
chemistry
10.Safety evaluation of heavy metals contaminated Astragalus membranaceus using health risk assessment model.
Jiao-Jiao YAO ; Dan-Dan KONG ; Jiao-Yang LUO ; Wen-Jie QIN ; Xue-Mei QIN ; Zhuo-Wen FAN ; Mei-Hua YANG
China Journal of Chinese Materia Medica 2019;44(14):3094-3099
To evaluate the safety of heavy metals contaminated Astragalus membranaceus,an appropriate protocol was established to study the heavy metals pollution level by health risk assessment. This study provided a detailed procedure to assess the medicinal herbs in quality control and safety evaluation,and expected to create awareness among the public on the safety of consuming of A. membranaceus or any other kinds of medicinal herbs. The heavy metals content of Cu,As,Cd,Pb and Hg in a total of 45 batches of A. membranaceus were carefully analyzed with a developed inductively coupled plasma mass spectrometry( ICP-MS). Besides,the heavy metal contamination level was further evaluated through 4 main assessment parameters,including maximum residue limit( MRL) set by International Standard Organization,estimated daily intake( EDI) set by IUPAC,target hazard quotients( THQ) and Total THQ set by USEPA and total THQs in raw herbs of A. membranaceus. In addition,the recommended MRLs of 5 main heavy metals aimed to A. membranaceus were calculated based on the regulated consumption quantity. The result showed that,under the ISO international standard of Chinese medicine-Chinese herbal medicine heavy metals,the unqualified rate was 8. 89% for A. membranaceus,which including 4 batches of A. membranaceus exceeded the MRL of As. Here,the standard THQ value of A. membranaceus was firstly proposed as 0. 02 and 0. 011 25 for adults and children,respectively,which were calculated with the recommended consumption quantity of 30 g and 9 g for adults and children. Furthermore,the values of THQ for As and total THQs in adults and children were exceeded the standard THQ in A. membranaceus,and the recommended MRLs of Pb,Cd,Hg and Cu in above medicinal materials that calculated based on health risk assessment model were higher than the regulated MRLs that set by ISO and Chinese Pharmacopeia. The research showed that the contents of heavy metals in A. membranaceus were not in the safe range and the certain non-carcinogenic risks to human body cannot be neglected. Based on above investigation result,it is easily known that the common evaluation method for raw herbs based on the comparison of MRL of heavy metals was not precise enough,and the international model of health risk assessment should be built for each medicinal herb. Above all,this study provided a more realistic research approach for safety evaluation of any other kinds of heavy metals contaminated medicinal herbs,including the establishment of heavy metals standard limit in a specified medicinal herb under recommended consumption quantity,and it is expected to create awareness among the public on the safety of consuming any other medicinal herbs.
Astragalus propinquus
;
chemistry
;
Drug Contamination
;
Drugs, Chinese Herbal
;
analysis
;
standards
;
Humans
;
Metals, Heavy
;
analysis
;
Plants, Medicinal
;
chemistry
;
Risk Assessment

Result Analysis
Print
Save
E-mail