1.Research progress on macrophage metabolic reprogramming in ocular diseases.
Yun HE ; Junwen OUYANG ; Qian TAN ; Kai HU
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):744-749
Macrophages are the crucial immune cells integral to host defense and the regulation of homeostasis, exhibiting remarkable plasticity across various tissues. Upon exposure to different stimuli, they can polarize into functional subsets. The reorganization process of cellular metabolism, known as metabolic reprogramming, involves the comprehensive adjustment of intracellular metabolites, enzymes, and metabolic pathways. Recent studies have revealed the critical role of metabolic reprogramming in shaping the phenotypes and functions of macrophages. Metabolism drives and regulates macrophages by generating bioenergy and biosynthetic precursors and by altering metabolites that affect gene expression and signal transduction. This review focuses on the immunomodulatory roles of key enzymes and specific products in major metabolic pathways, such as glucose metabolism, lipid metabolism and amino acid metabolism, in macrophages. Additionally, it will highlight recent advancements in targeting metabolic regulation of macrophages in the context of ocular diseases.
Humans
;
Macrophages/immunology*
;
Animals
;
Eye Diseases/immunology*
;
Lipid Metabolism
;
Glucose/metabolism*
;
Metabolic Networks and Pathways
;
Signal Transduction
;
Metabolic Reprogramming
2.Immune Checkpoints Mediate Tumor Immune Regulation through Metabolic Pathways.
Weiguang DU ; Xiyang TANG ; Yulong ZHOU ; Mengchao LI ; Ze JIN ; Jiaqi DOU ; Jinbo ZHAO
Chinese Journal of Lung Cancer 2025;28(3):213-220
Immune checkpoints include a series of receptor-ligand pairs that play a key role in the proliferation, activation, and immune regulatory responses of immune cells. Although immune checkpoint inhibitors (ICIs), such as programmed death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have achieved good therapeutic effects in clinical practice, some patients still experience ineffective treatment and immune resistance. A large amount of evidence has shown that immune checkpoint proteins are related to cell metabolism during immune regulation. On the one hand, immune checkpoints connect to alter the metabolic reprogramming of tumor cells to compete for nutrients required by immune cells. On the other hand, immune checkpoints regulate the metabolic pathways of immune cells, such as phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) to affect the activation of immune cells. Based on a review of the literature, this article reviews the mechanisms by which PD-1, CTLA-4, T cell immunoreceptor with Ig and ITIM domains (TIGIT), T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), cluster of differentiation 47 (CD47), and indoleamine 2,3-dioxygenase 1 (IDO1) regulate cell metabolic reprogramming, and looks forward to whether targeting the ligand-receptor pairs of immune checkpoints in a "dual regulation" manner and inhibiting metabolic pathways can effectively solve the problem of tumor immune resistance.
.
Humans
;
Neoplasms/genetics*
;
Metabolic Networks and Pathways/immunology*
;
Animals
;
Immune Checkpoint Inhibitors/pharmacology*
3.Study on treatment of "cytokine storm" by anti-2019-nCoV prescriptions based on arachidonic acid metabolic pathway.
Yue REN ; Mei-Cun YAO ; Xiao-Qian HUO ; Yu GU ; Wei-Xing ZHU ; Yan-Jiang QIAO ; Yan-Ling ZHANG
China Journal of Chinese Materia Medica 2020;45(6):1225-1231
Since the outbreak of 2019-nCoV, the epidemic has developed rapidly and the situation is grim. LANCET figured out that the 2019-nCoV is closely related to "cytokine storm". "Cytokine storm" is an excessive immune response of the body to external stimuli such as viruses and bacteria. As the virus attacking the body, it stimulates the secretion of a large number of inflammatory factors: interleukin(IL), interferon(IFN), C-X-C motif chemokine(CXCL) and so on, which lead to cytokine cascade reaction. With the exudation of inflammatory factors, cytokines increase abnormally in tissues and organs, interfering with the immune system, causing excessive immune response of the body, resulting in diffuse damage of lung cells, pulmonary fibrosis, and multiple organ damage, even death. Arachidonic acid(AA) metabolic pathway is principally used to synthesize inflammatory cytokines, such as monocyte chemotactic protein 1(MCP-1), tumor necrosis factor(TNF), IL, IFN, etc., which is closely related to the occurrence, development and regression of inflammation. Therefore, the inhibition of AA metabolism pathway is benefit for inhibiting the release of inflammatory factors in the body and alleviating the "cytokine storm". Based on the pharmacophore models of the targets on AA metabolic pathway, the traditional Chinese medicine database 2009(TCMD 2009) was screened. The potential herbs were ranked by the number of hit molecules, which were scored by pharmacophore fit value. In the end, we obtained the potential active prescriptions on "cytokine storm" according to the potential herbs in the "National novel coronavirus pneumonia diagnosis and treatment plan(trial version sixth)". The results showed that the hit components with the inhibitory effect on AA were magnolignan Ⅰ, lonicerin and physcion-8-O-β-D-glucopy-ranoside, which mostly extracted from Magnoliae Officinalis Cortex, Zingiberis Rhizoma Recens, Lonicerae Japonicae Flos, Rhei Radix et Rhizoma, Salviae Miltiorrhizae Radix et Rhizoma, Scutellariae Radix, Gardeniae Fructus, Ginseng Radix et Rhizoma, Arctii Fructus, Dryopteridis Crassirhizomatis Rhizoma, Paeoniaeradix Rubra, Dioscoreae Rhizoma. Finally the anti-2019-nCoV prescriptions were analyzed to obtain the potential active prescriptions on AA metabolic pathway, Huoxiang Zhengqi Capsules, Jinhua Qinggan Granules, Lianhua Qingwen Capsules, Qingfei Paidu Decoction, Xuebijing Injection, Reduning Injection and Tanreqing Injection were found that may prevent 2019-nCoV via regulate cytokines. This study intends to provide reference for clinical use of traditional Chinese medicine to resist new coronavirus.
Arachidonic Acid/metabolism*
;
Betacoronavirus
;
COVID-19
;
Coronavirus Infections/immunology*
;
Cytokines/immunology*
;
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Medicine, Chinese Traditional
;
Metabolic Networks and Pathways
;
Pandemics
;
Pneumonia, Viral/immunology*
;
SARS-CoV-2
;
COVID-19 Drug Treatment
4.Regulation of T cell immunity by cellular metabolism.
Zhilin HU ; Qiang ZOU ; Bing SU
Frontiers of Medicine 2018;12(4):463-472
T cells are an important adaptive immune response arm that mediates cell-mediated immunity. T cell metabolism plays a central role in T cell activation, proliferation, differentiation, and effector function. Specific metabolic programs are tightly controlled to mediate T cell immune responses, and alterations in T cell metabolism may result in many immunological disorders. In this review, we will summarize the main T cell metabolic pathways and the important factors participating in T cell metabolic programming during T cell homeostasis, differentiation, and function.
Animals
;
Cell Physiological Phenomena
;
Humans
;
Immunity, Cellular
;
physiology
;
Metabolic Networks and Pathways
;
immunology
;
T-Lymphocytes
;
immunology
;
metabolism

Result Analysis
Print
Save
E-mail