1.Effects of Adipose-derived Mesenchymal Stem Cell Exosomes on Corneal Stromal Fibroblast Viability and Extracellular Matrix Synthesis.
Ting SHEN ; ; Qing-Qing ZHENG ; Jiang SHEN ; Qiu-Shi LI ; Xing-Hui SONG ; Hong-Bo LUO ; Chao-Yang HONG ; ; Ke YAO
Chinese Medical Journal 2018;131(6):704-712
BackgroundCorneal stromal cells (CSCs) are components of the corneal endothelial microenvironment that can be induced to form a functional tissue-engineered corneal endothelium. Adipose-derived mesenchymal stem cells (ADSCs) have been reported as an important component of regenerative medicine and cell therapy for corneal stromal damage. We have demonstrated that the treatment with ADSCs leads to phenotypic changes in CSCs in vitro. However, the underlying mechanisms of such ADSC-induced changes in CSCs remain unclear.
MethodsADSCs and CSCs were isolated from New Zealand white rabbits and cultured in vitro. An Exosome Isolation Kit, Western blotting, and nanoparticle tracking analysis (NTA) were used to isolate and confirm the exosomes from ADSC culture medium. Meanwhile, the optimal exosome concentration and treatment time were selected. Cell Counting Kit-8 and annexin V-fluorescein isothiocyanate/propidium iodide assays were used to assess the effect of ADSC- derived exosomes on the proliferation and apoptosis of CSCs. To evaluate the effects of ADSC- derived exosomes on CSC invasion activity, Western blotting was used to detect the expression of matrix metalloproteinases (MMPs) and collagens.
Results:ADSCs and CSCs were successfully isolated from New Zealand rabbits. The optimal concentration and treatment time of exosomes for the following study were 100 μg/ml and 96 h, respectively. NTA revealed that the ADSC-derived exosomes appeared as nanoparticles (40-200 nm), and Western blotting confirmed positive expression of CD9, CD81, flotillin-1, and HSP70 versus ADSC cytoplasmic proteins (all P < 0.01). ADSC-derived exosomes (50 μg/ml and 100 μg/ml) significantly promoted proliferation and inhibited apoptosis (mainly early apoptosis) of CSCs versus non-exosome-treated CSCs (all P < 0.05). Interestingly, MMPs were downregulated and extracellular matrix (ECM)-related proteins including collagens and fibronectin were upregulated in the exosome-treated CSCs versus non-exosome-treated CSCs (MMP1: t = 80.103, P < 0.01; MMP2: t = 114.778, P < 0.01; MMP3: t = 56.208, P < 0.01; and MMP9: t = 60.617, P < 0.01; collagen I: t = -82.742, P < 0.01; collagen II: t = -72.818, P < 0.01; collagen III: t = -104.452, P < 0.01; collagen IV: t = -133.426, P < 0.01, and collagen V: t = -294.019, P < 0.01; and fibronectin: t = -92.491, P < 0.01, respectively).
Conclusion:The findings indicate that ADSCs might play an important role in CSC viability regulation and ECM remodeling, partially through the secretion of exosomes.
Adipose Tissue ; cytology ; Animals ; Cell Proliferation ; physiology ; Cell Survival ; physiology ; Cells, Cultured ; Exosomes ; metabolism ; Extracellular Matrix ; metabolism ; Fibroblasts ; cytology ; metabolism ; Matrix Metalloproteinases ; metabolism ; Mesenchymal Stromal Cells ; cytology ; metabolism ; Rabbits
2.Angiopoietin-1 Modified Human Umbilical Cord Mesenchymal Stem Cell Therapy for Endotoxin-Induced Acute Lung Injury in Rats.
Zhi Wei HUANG ; Ning LIU ; Dong LI ; Hai Yan ZHANG ; Ying WANG ; Yi LIU ; Le Ling ZHANG ; Xiu Li JU
Yonsei Medical Journal 2017;58(1):206-216
PURPOSE: Angiopoietin-1 (Ang1) is a critical factor for vascular stabilization and endothelial survival via inhibition of endothelial permeability and leukocyte- endothelium interactions. Hence, we hypothesized that treatment with umbilical cord mesenchymal stem cells (UCMSCs) carrying the Ang1 gene (UCMSCs-Ang1) might be a potential approach for acute lung injury (ALI) induced by lipopolysaccharide (LPS). MATERIALS AND METHODS: UCMSCs with or without transfection with the human Ang1 gene were delivered intravenously into rats one hour after intra-abdominal instillation of LPS to induce ALI. After the rats were sacrificed at 6 hours, 24 hours, 48 hours, 8 days, and 15 days post-injection of LPS, the serum, the lung tissues, and bronchoalveolar lavage fluid (BALF) were harvested for analysis, respectively. RESULTS: Administration of fluorescence microscope confirmed the increased presence of UCMSCs in the injured lungs. The evaluation of UCMSCs and UCMSCs-Ang1 actions revealed that Ang1 overexpression further decreased the levels of the pro-inflammatory cytokines TNF-α, TGF-β1, and IL-6 and increased the expression of the anti-inflammatory cytokine IL-10 in the injured lungs. This synergy caused a substantial decrease in lung airspace inflammation and vascular leakage, characterized by significant reductions in wet/dry ratio, differential neutrophil counts, myeloperoxidase activity, and BALF. The rats treated by UCMSCs-Ang1 showed improved survival and lower ALI scores. CONCLUSION: UCMSCs-Ang1 could improve both systemic inflammation and alveolar permeability in ALI. UC-derived MSCs-based Ang1 gene therapy may be developed as a potential novel strategy for the treatment of ALI.
Acute Lung Injury/chemically induced/*therapy
;
Angiopoietin-1/*genetics
;
Animals
;
Bronchoalveolar Lavage Fluid
;
Cytokines/metabolism
;
Endotoxins
;
Genetic Therapy
;
Interleukin-10/metabolism
;
Interleukin-6/metabolism
;
Leukocyte Count
;
Lipopolysaccharides
;
Lung/metabolism
;
Male
;
*Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells/metabolism
;
Neutrophils/metabolism
;
Rats
;
Transforming Growth Factor beta1/metabolism
;
Tumor Necrosis Factor-alpha/metabolism
;
Umbilical Cord/*cytology
3.The Role of Mesothelial Cells in Liver Development, Injury, and Regeneration.
Gut and Liver 2016;10(2):166-176
Mesothelial cells (MCs) cover the surface of visceral organs and the parietal walls of cavities, and they synthesize lubricating fluids to create a slippery surface that facilitates movement between organs without friction. Recent studies have indicated that MCs play active roles in liver development, fibrosis, and regeneration. During liver development, the mesoderm produces MCs that form a single epithelial layer of the mesothelium. MCs exhibit an intermediate phenotype between epithelial cells and mesenchymal cells. Lineage tracing studies have indicated that during liver development, MCs act as mesenchymal progenitor cells that produce hepatic stellate cells, fibroblasts around blood vessels, and smooth muscle cells. Upon liver injury, MCs migrate inward from the liver surface and produce hepatic stellate cells or myofibroblast depending on the etiology, suggesting that MCs are the source of myofibroblasts in capsular fibrosis. Similar to the activation of hepatic stellate cells, transforming growth factor β induces the conversion of MCs into myofibroblasts. Further elucidation of the biological and molecular changes involved in MC activation and fibrogenesis will contribute to the development of novel approaches for the prevention and therapy of liver fibrosis.
Epithelial Cells/*physiology
;
Epithelium/metabolism
;
Hepatic Stellate Cells/*physiology
;
Humans
;
Liver/*cytology/injuries/*physiology
;
Liver Cirrhosis/etiology/prevention & control
;
Liver Regeneration/*physiology
;
Mesenchymal Stromal Cells/physiology
;
Myofibroblasts/physiology
4.Human Umbilical Cord-derived Mesenchymal Stem Cells Secrete Interleukin-6 to Influence Differentiation of Leukemic Cells.
Fang CHEN ; Feng-xia MA ; Yang LI ; Fang-yun XU ; Ying CHI ; Shi-hong LU ; Zhong-chao HAN
Acta Academiae Medicinae Sinicae 2016;38(2):164-168
OBJECTIVETo investigate the effect of human umbilical cord-derived mesenchymal stem cells (UC-MSC) on the differentiation of leukemic cells.
METHODSThe co-culture system of UC-MSC with acute promyelocytic leukemic cell line NB4 cells was constructed in vitro,and the differentiation status of the leukemic cells was assessed by cell morphology,nitroblue tetrazolium reduction test,and cell surface differentiation marker CD11b.
RESULTSUC-MSC induced the granulocytic differentiation of NB4 cells. When UC-MSC and a small dose of all-trans retinoic acid were applied together,the differentiation-inducing effect was enhanced in an additive manner. Interleukin (IL)-6Ra neutralization attenuated differentiation and exogenous IL-6-induced differentiation of leukemic cells.
CONCLUSIONUC-MSC can promotd granulocytic differentiation of acute promyelocytic leukemia cells by way of IL-6 and presented additive effect when combined with a small dose of all-trans retinoic acid.
Cell Differentiation ; Cell Line, Tumor ; Humans ; Interleukin-6 ; metabolism ; Leukemia, Promyelocytic, Acute ; pathology ; Mesenchymal Stromal Cells ; metabolism ; Tretinoin ; pharmacology ; Umbilical Cord ; cytology
5.Possible Mechanism of Therapeutic Effect of 3-Methyl-1-phenyl-2-pyrazolin-5-one and Bone Marrow Stromal Cells Combination Treatment in Rat Ischemic Stroke Model.
Li-Hua SHEN ; Jin CHEN ; Hua-Chao SHEN ; Min YE ; Xiao-Fei LIU ; Wen-Sen DING ; Ya-Feng SHENG ; Xin-Sheng DING ;
Chinese Medical Journal 2016;129(12):1471-1476
BACKGROUNDThe functional improvement following bone marrow stromal cells (BMSCs) transplantation after stroke is directly related to the number of engrafted cells and neurogenesis in the injured brain. Here, we tried to evaluate whether 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186), a free radical scavenger, might influence BMSCs migration to ischemic brain, which could promote neurogenesis and thereby enhance treatment effects after stroke.
METHODSRat transient middle cerebral artery occlusion (MCAO) model was established. Two separate MCAO groups were administered with either MCI-186 or phosphate-buffered saline (PBS) solution to evaluate the expression of stromal cell-derived factor-1 (SDF-1) in ischemic brain, and compared to that in sham group (n = 5/ group/time point[at 1, 3, and 7 days after operation]). The content of chemokine receptor-4 (CXCR4, a main receptor of SDF-1) at 7 days after operation was also observed on cultured BMSCs. Another four MCAO groups were intravenously administered with either PBS, MCI-186, BMSCs (2 × 106), or a combination of MCI-186 and BMSCs (n = 10/group). 5-bromo-2-deoxyuridine (BrdU) and Nestin double-immunofluorescence staining was performed to identify the engrafted BMSCs and neuronal differentiation. Adhesive-removal test and foot-fault evaluation were used to test the neurological outcome.
RESULTSMCI-186 upregulated the expression of SDF-1 in ischemic brain and CXCR4 content in BMSCs was enhanced after hypoxic stimulation. When MCAO rats were treated with either MCI-186, BMSCs, or a combination of MCI-186 and BMSCs, the neurologic function was obviously recovered as compared to PBS control group (P < 0.01 or 0.05, respectively). Combination therapy represented a further restoration, increased the number of BMSCs and Nestin+ cells in ischemic brain as compared with BMSCs monotherapy (P < 0.01). The number of engrafted-BMSCs was correlated with the density of neuronal cells in ischemic brain (r = 0.72 , P < 0.01) and the improvement of foot-fault (r = 0.70, P < 0.01).
CONCLUSIONMCI-186 might promote BMSCs migration to the ischemic brain, amplify the neurogenesis, and improve the effects of cell therapy.
Animals ; Antipyrine ; analogs & derivatives ; therapeutic use ; Bone Marrow Cells ; cytology ; physiology ; Brain Ischemia ; drug therapy ; metabolism ; therapy ; Chemokine CXCL12 ; metabolism ; Disease Models, Animal ; Infarction, Middle Cerebral Artery ; drug therapy ; metabolism ; therapy ; Male ; Mesenchymal Stromal Cells ; physiology ; Neurogenesis ; physiology ; Rats ; Rats, Sprague-Dawley ; Stroke ; drug therapy ; metabolism ; therapy
6.Dickkopf-1 has an Inhibitory Effect on Mesenchymal Stem Cells to Fibroblast Differentiation.
Yan LI ; Sang-Sang QIU ; Yan SHAO ; Hong-Huan SONG ; Gu-Li LI ; Wei LU ; Li-Mei ZHU
Chinese Medical Journal 2016;129(10):1200-1207
BACKGROUNDMesenchymal stem cells (MSCs) are bone marrow stem cells which play an important role in tissue repair. The treatment with MSCs will be likely to aggravate the degree of fibrosis. The Wnt/β-catenin signaling pathway is involved in developmental and physiological processes, such as fibrosis. Dickkopfs (DKKs) are considered as an antagonist to block Wnt/β-catenin signaling pathway by binding the receptor of receptor-related protein (LRP5/6). DKK1 was chosen in attempt to inhibit fibrosis of MSCs by lowering activity of Wnt/β-catenin signaling pathway.
METHODSStable MSCs were randomly divided into four groups: MSCs control, MSCs + transforming growth factor-β (TGF-β), MSCs + DKK1, and MSCs + TGF-β + DKK1. Flow cytometry was used to identify MSCs. Cell viability was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide test. Immunofluorescence was used to detect protein expression in the Wnt/β-catenin signaling pathways. Western blotting analysis was employed to test expression of fibroblast surface markers and, finally, real-time reverse transcription polymerase chain reaction was employed to test mRNA expression of fibroblast surface markers and Wnt/β-catenin signaling proteins.
RESULTSCultivated MSCs were found to conform to the characteristics of standard MSCs: expression of cluster of differentiation (CD) 73, 90, and 105, not expression of 34, 45, and 79. We found that DKK1 could maintain the normal cell morphology of MSCs. Western blotting analysis showed that fibroblast surface markers were expressed in high quantities in the group MSCs + TGF-β. However, the expression was lower in the MSCs + TGF-β + DKK1. Immunofluorescence showed high expression of all Wnt/β-catnin molecules in the MSCs + TGF-β group but expressed in lower quantities in MSCs + TGF-β + DKK1 group. Finally, mRNA expression of fibroblast markers vimentin, α-smooth muscle actin and Wnt/β-catenin signaling proteins β-catenin, T-cell factor, and glycogen synthase kinase-3β was significantly increased in MSCs + TGF-β group compared to control (P < 0.05). Expression of the same fibroblast markers and Wnt/β-catenin was decreased to regular quantities in the MSCs + TGF-β + DKK1 group.
CONCLUSIONSDKK1, Wnt/β-catenin inhibitors, blocks the Wnt/β-catenin signaling pathway to inhibit the process of MSCs fibrosis. It might provide some new ways for clinical treatment of certain diseases.
Animals ; Cell Differentiation ; physiology ; Cells, Cultured ; Female ; Fibroblasts ; cytology ; metabolism ; Intercellular Signaling Peptides and Proteins ; genetics ; metabolism ; Mesenchymal Stromal Cells ; cytology ; metabolism ; Mice ; Rats ; Transforming Growth Factor beta ; genetics ; metabolism
7.Effect of Intercellular Adhesion Molecule-1 on Adherence Between Mesenchymal Stem Cells and Endothelial Progenitor Cells.
Jun GUO ; Jie XIA ; Hong-Wei ZHANG ; Xiao-Yi WANG ; Ji-Xue HOU ; Xue-Ling CHEN ; Xiang-Wei WU
Journal of Experimental Hematology 2016;24(1):211-216
OBJECTIVETo investigate the effects of intercellular adhesion molecule-1(ICAM-1) on the adherence between mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC).
METHODSMSC and EPC were isolated, cultured and expanded from the 6-8 weeks aged C57BL/6 murine bone marrow by in vitro. Immuno-fluorescence was used to detect the expression of ICAM-1 in MSC group, EPC group and co-cultured MSC and EPC group. The mRNA and protein levels of ICAM-1 were detected by RT-PCR and Western blot respectively, then, the ICAM-1 adherence between MSC and EPC was observed by adding different concentration of neutralizing antibody.
RESULTSThe expression of ICAM-1 on surface of MSC and EPC could be detected by cell immunofluorescence method. According to results of the semiquantitative fluorescene detection, the fluorescence strength of MSC+EPC co-cultured group (89.02 ± 24.52) was higher than that of MSC group (31.25 ± 2.95) and EPC group (34.32 ± 5.02), and there was statistical difference between them (P < 0.01), but there was no obvious difference between MSC group and EPC group (P > 0.05). RT-PCR detection showed that the expression levels of ICAM-1 in MSC+EPC co-cultured group were higher than that in MSC group and that in EPC group (P < 0.01), and expression level of ICAM in EPC group was higher than that in MSC group (P < 0.01). Western blot detection showed that the expression level of ICAM-1 protein in MSC+EPC co-cultured group (0.33 ± 0.4) was higher than that in MSC group (0.11 ± 0.01) (P < 0.05) and than that in EPC group (0.19+0.02) (P < 0.05), However, the expression level of ICAM-1 protein in EPC group was higher than that in MSC group (P < 0.05). The test of different concentrations against neutralizing antibody showed that with the increasing of concentration of ICAM-1 neutralizing antibody, the adhesion capability of MSC and EPC was gradually decreasing.
CONCLUSIONThe ICAM-1 can mediate the adherence process between MSC and EPC.
Animals ; Bone Marrow ; Cell Adhesion ; Coculture Techniques ; Endothelial Progenitor Cells ; cytology ; Intercellular Adhesion Molecule-1 ; metabolism ; Mesenchymal Stromal Cells ; cytology ; Mice ; Mice, Inbred C57BL
8.Effects of Leukemia Inhibitory Factor Combined with Basic Fibroblast Growth Factor on Self-maintenance and Self-renewal of Human Umbilical Cord Mesenchymal Stem Cells In Vitro.
Wen-Long HU ; Ping-Ping WU ; Chang-Chang YIN ; Jian-Ming SHI ; Ming YIN
Journal of Experimental Hematology 2016;24(1):184-190
OBJECTIVETo study the effects of LIF combined with bFGF on the proliferation, stemness and senescence of hUC-MSC.
METHODSExperiments were divided into 4 groups: control group, in which the cells were treated with complete medium (α-MEM containing 10% FBS); group LIF, in which the cells were treated with complete medium containing 10 ng/ml LIF; group bFGF, in which the cells were treated with complete medium containing 10 ng/ml bFGF; combination group, in which the cells were treated with complete medium containing 10 ng/ml LIF and 10 ng/ml bFGF. The growth curves of hUC-MSC at passage 4 in different groups were assayed by cell counting kit 8. Cellular morphologic changes were observed under inverted phase contrast microscope; hUC-MSC senescence in different groups was detected by β-galactosidase staining. The expression of PCNA, P16, P21, P53, OCT4 and NANOG genes was detected by RT-PCR.
RESULTSThe cell growth curves of each group were similar to the S-shape; the cell proliferation rate from high to low as follows: that in the combination group > group bFGF > group LIF > control group. Senescence and declining of proliferation were observed at hUC-MSC very early in control group; the cells in group LIF maintained good cellular morphology at early stage, but cell proliferation was slow and late senescence was observed; a few cells in group bFGF presented signs of senescence, but with quick proliferation; the cells in combination group grew quickly and maintained cellular morphology of hUC-MSC for long time. The LIF and bFGF up-regulated the expression of PCNA, OCT4 and NANOG, while they down-regulated the expression of P16, P21, P53, and their combinative effects were more significant.
CONCLUSIONLIF combined with bFGF not only can promote the proliferation and maintenance of stemness of hUC-MSC, but also can delay the senescence of hUC-MSC.
Cell Cycle ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p16 ; metabolism ; Cyclin-Dependent Kinase Inhibitor p21 ; metabolism ; Fibroblast Growth Factor 2 ; pharmacology ; Genes, Homeobox ; Humans ; Leukemia Inhibitory Factor ; pharmacology ; Mesenchymal Stromal Cells ; cytology ; drug effects ; Octamer Transcription Factor-3 ; metabolism ; Organic Chemicals ; Proliferating Cell Nuclear Antigen ; metabolism ; Tumor Suppressor Protein p53 ; metabolism ; Umbilical Cord ; cytology
9.Effect of Human Umbilical Cord Mesenchymal Stem Cells on Etoposide-induced Nalm-6 Cell Apoptosis.
Jian-Ling WANG ; Dong LI ; Xue LI ; Pan-Pan ZHOU ; Xiu-Li JU
Journal of Experimental Hematology 2016;24(1):178-183
OBJECTIVETo investigate the effect of human umbilical cord mesenchymal stem cells (hUC-MSC) on VP16-induced apoptosis of Nalm-6 cells.
METHODShUC-MSC were isolated and identified using morphological observation and flow cytometry, then Nalm-6 cells were treated with hUC-MSC with or without VP16. Apoptosis and cell cycle were assayed by FACS. The mRNA levels of apoptosis-related genes BCL-2, BAX and caspase-3 were detected by quantitative RT-PCR, and the protein levels of BCL-2, BAX and caspase-3 were examined by Western blot.
RESULTSFACS showed that hUC-MSC inhibited the proliferation and decreased apoptosis of Nalm-6 cells resulted from VP16. The quantitative RT-PCR showed that hUC-MSC increased the mRNA expression level of BCL-2 and decreased the expression level of BAX and caspase-3 (P < 0.05). Western blot showed that the protein expression level of BCL-2 increased, and expression level of BAX and caspase-3 decreased in Nalm-6 cells after co-culture with hUC-MSC (P < 0.05).
CONCLUSIONhUC-MSC may protect Nalm-6 cells from apoptosis induced by VP16 through regulation of BCL-2, BAX and caspase-3.
Apoptosis ; Caspase 3 ; metabolism ; Cell Cycle ; Cell Line, Tumor ; Cells, Cultured ; Coculture Techniques ; Etoposide ; adverse effects ; Flow Cytometry ; Humans ; Mesenchymal Stromal Cells ; cytology ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Umbilical Cord ; cytology ; bcl-2-Associated X Protein ; metabolism
10.Effects of culture supernatant of human amnion mesenchymal stem cells on biological characteristics of human fibroblasts.
Qi'er WU ; Lu LYU ; Haiming XIN ; Liang LUO ; Yalin TONG ; Yongliang MO ; Yigang YUE
Chinese Journal of Burns 2016;32(6):370-375
OBJECTIVETo investigate the effects of culture supernatant of human amnion mesenchymal stem cells (hAMSCs-CS) on biological characteristics of human fibroblasts.
METHODS(1) hAMSCs were isolated from deprecated human fresh amnion tissue of placenta and then sub-cultured. The morphology of hAMSCs on culture day 3 and hAMSCs of the third passage were observed with inverted phase contrast microscope. (2) Two batches of hAMSCs of the third passage were obtained, then the expression of vimentin of cells was observed with immunofluorescence method, and the expression of cell surface marker CD90, CD73, CD105, and CD45 was detected by flow cytometer. (3) hAMSCs-CS of the third passage at culture hour 72 were collected, and the content of insulin-like growth factor Ⅰ (IGF-Ⅰ), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and basic fibroblast growth factor (bFGF) were detected by enzyme-linked immunosorbent assay. (4) Human fibroblasts were isolated from deprecated human fresh prepuce tissue of circumcision and then sub-cultured. Human fibroblasts of the third passage were used in the following experiments. Cells were divided into blank control group and 10%, 30%, 50%, and 70% hAMSCs-CS groups according to the random number table (the same grouping method below), with 48 wells in each group. Cells in blank control group were cultured with DMEM/F12 medium containing 2% fetal bovine serum (FBS), while cells in the latter 4 groups were cultured with DMEM/F12 medium containing corresponding volume fraction of hAMSCs-CS and 2% FBS. The proliferation activity of cells was detected by cell counting kit 8 and microplate reader at culture hour 12, 24, 48, and 72, respectively, and corresponding volume fraction of hAMSCs-CS which causing the best proliferation activity of human fibroblasts was used in the following experiments. (5) Human fibroblasts were divided into blank control group and 50% hAMSCs-CS group and treated as in (4), with 4 wells in each group, at post scratch hour (PSH) 0 (immediately after scratch), 12, 24, 48, and 72, the migration distance of cells was observed and measured with inverted phase contrast microscope. (6) Human fibroblasts were grouped and treated as in (5), with 3 battles in each group, and apoptosis rate of cells was detected by flow cytometer. Data were processed with analysis of variance of factorial design, analysis of variance for repeated measurement, one-way analysis of variance, LSD test, and t test.
RESULTS(1) On culture day 3, most hAMSCs were in large form, and spindle-shaped with much prominences like fibroblasts or in flat polygonal shape. hAMSCs of the third passage were spindle-shaped. The expression of vimentin of hAMSCs of the third passage was strongly positive, and the expressions of surface markers CD90, CD73, and CD105 of the cells were positive, while the expression of CD45 of the cells was negative. (2) The content of IGF-Ⅰ, VEGF, EGF, and bFGF in hAMSCs-CS were respectively (11.7±1.0), (316±68), (6.1±0.4), and (1.49±0.05) pg/mL. (3) At culture hour 12-72, the proliferation activity of human fibroblasts in each hAMSCs-CS group was significantly higher than that in blank control group (with P values below 0.01), and the proliferation activity of human fibroblasts in 50% hAMSCs-CS group was the highest. (4) The width of scratch in two groups was nearly the same at PSH 0. The migration distance of cells in 50% hAMSCs-CS group was significantly longer than that in blank control group at PSH 12-72 (with P values below 0.01). (5) The apoptosis rate of human fibroblasts in blank control group was (16.2±2.4)%, which was significantly higher than that in 50% hAMSCs-CS group [(7.4±3.6)%, t=6.710, P<0.01].
CONCLUSIONShAMSCs-CS can promote proliferation and migration of human fibroblasts and inhibit the apoptosis of human fibroblasts.
Amnion ; cytology ; Apoptosis ; Cell Movement ; Cell Proliferation ; Cells, Cultured ; Culture Media, Conditioned ; chemistry ; Enzyme-Linked Immunosorbent Assay ; Epidermal Growth Factor ; metabolism ; Female ; Fibroblast Growth Factor 2 ; metabolism ; Fibroblasts ; cytology ; drug effects ; Flow Cytometry ; Humans ; Insulin-Like Growth Factor I ; metabolism ; Male ; Mesenchymal Stromal Cells ; chemistry ; Pregnancy ; Vascular Endothelial Growth Factor A ; metabolism

Result Analysis
Print
Save
E-mail