1.Immunoregulatory Effect of Adipose Mesenchymal Stem Cells on Peripheral Blood Lymphocytes in Psoriasis Vulgaris Patients.
Xiu Ping YIN ; Rong Jia ZHU ; Chen ZHUANG ; Shuo WANG ; Chun Hua ZHAO ; Ping SONG
Acta Academiae Medicinae Sinicae 2018;40(6):790-796
Objective To investigate the effect of adipose mesenchymal stem cells(AMSCs) on the peripheral blood lymphocyte(PBL) in psoriasis vulgaris(PV) patients and the expression and secretion profiles of related inflammatory cytokines in the PBL.Methods AMSCs from three PV patients were co-cultured with PBL. Peripheral blood regulatory cells(Treg) and T helper cell 17(Th17)ratio was measured by flow cytometry. The anti- and pro-inflammatory cytokines expressed and secreted by PBL were detected by quantitative real-time polymerase chain reaction(qRT-PCR) and enzyme-linked immunosorbent assay(ELISA).Results The Treg/total lymphocyte ratio was significantly higher in the healthy people AMSCs+PBL co-culture group[(3.2±0.5)%;P=0.001],but AMSCs in patients had a tendency to promote the proliferation of Treg cells [(1.3±0.2)%],with no significant difference(P=0.485) when compared with the PBL culture alone group[(1.0±0.1)%]. qRT-PCR showed that the ability of PBL in expressing Treg transcription factor forkhead box p3 and transforming growth factor(TGF)-Β mRNA was significantly lower in psoriasis AMSCs+PBL co-culture group than in the healthy people AMSCs+PBL co-culture group(P=0.00,P=0.03),AMSCs had a tendency to promote the expression of interlukin(IL)-10 in peripheral blood lymphocytes,but there was no significant difference(P=0.09).ELISA showed the PBL in healthy people AMSCs+PBL co-culture group secreted the anti-inflammatory cytokine IL-10[(156.9±41.8) ng/Μl] and TGF-Β[(2774.1 ± 526.4) ng/Μl];in contrast,the abilities of PBL in PV patient AMSCs+PBL co-culture group in secreting the anti-inflammatory cytokines has a downward trend:IL-10[(90.4±28.8) ng/Μl] and TGF-Β[(1597.9±55.7) ng/Μl],although the differences were not statistically significant. After the co-culture,the proportion of Th17 cells in the psoriasis AMSCs+PBL co-culture group[(0.8±0.3)%] showed a decreasing trend when compared with the PBL culture alone group[(1.1±0.1)%],although the results were not statistically significant. Also,the proportion of Th17 cells showed no significant difference between PV patient AMSCs+PBL co-culture group and healthy people AMSCs+PBL co-culture group. Finally,both the psoriasis AMSCs+PBL co-culture group and the healthy people AMSCs+PBL co-culture group showed no obvious inhibitory effect on the expression and secretion of Th17 transcription factor retinoid-related orphan nuclear receptor Γt and pro-inflammatory cytokines IL-17 and IL-23 in PBL,and there was no significant difference between these two groups.Conclusions AMSCs in PV patients have decreased ability in regulating the anti-inflammatory function of peripheral blood Treg lymphocytes. However,they have no effect on the proinflammatory effect of peripheral blood Th17 lymphocytes.
Adipose Tissue
;
cytology
;
Cytokines
;
immunology
;
Forkhead Transcription Factors
;
immunology
;
Humans
;
Inflammation
;
immunology
;
Mesenchymal Stem Cells
;
cytology
;
Psoriasis
;
immunology
;
T-Lymphocytes, Regulatory
;
immunology
;
Th17 Cells
;
immunology
2.Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages.
Dong Im CHO ; Mi Ra KIM ; Hye Yun JEONG ; Hae Chang JEONG ; Myung Ho JEONG ; Sung Ho YOON ; Yong Sook KIM ; Youngkeun AHN
Experimental & Molecular Medicine 2014;46(1):e70-
Mesenchymal stem cells (MSCs) have been widely studied for their applications in stem cell-based regeneration. During myocardial infarction (MI), infiltrated macrophages have pivotal roles in inflammation, angiogenesis and cardiac remodeling. We hypothesized that MSCs may modulate the immunologic environment to accelerate regeneration. This study was designed to assess the functional relationship between the macrophage phenotype and MSCs. MSCs isolated from bone marrow and bone marrow-derived macrophages (BMDMs) underwent differentiation induced by macrophage colony-stimulating factor. To determine the macrophage phenotype, classical M1 markers and alternative M2 markers were analyzed with or without co-culturing with MSCs in a transwell system. For animal studies, MI was induced by the ligation of the rat coronary artery. MSCs were injected within the infarct myocardium, and we analyzed the phenotype of the infiltrated macrophages by immunostaining. In the MSC-injected myocardium, the macrophages adjacent to the MSCs showed strong expression of arginase-1 (Arg1), an M2 marker. In BMDMs co-cultured with MSCs, the M1 markers such as interleukin-6 (IL-6), IL-1beta, monocyte chemoattractant protein-1 and inducible nitric oxide synthase (iNOS) were significantly reduced. In contrast, the M2 markers such as IL-10, IL-4, CD206 and Arg1 were markedly increased by co-culturing with MSCs. Specifically, the ratio of iNOS to Arg1 in BMDMs was notably downregulated by co-culturing with MSCs. These results suggest that the preferential shift of the macrophage phenotype from M1 to M2 may be related to the immune-modulating characteristics of MSCs that contribute to cardiac repair.
Animals
;
Biomarkers/metabolism
;
*Cell Differentiation
;
Cells, Cultured
;
Coculture Techniques
;
Culture Media, Conditioned/pharmacology
;
Humans
;
*Macrophage Activation
;
Macrophage Colony-Stimulating Factor/*pharmacology
;
Macrophages/drug effects/*immunology/metabolism
;
*Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells/*cytology/drug effects/metabolism
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Myocardial Infarction/surgery
;
Rats
3.Immunosuppressive effects of fetal bone marrow derived mesenchymal stem cells on in vitro proliferation of adult peripheral lymphocyte and expression of immune-related factors.
Fang LI ; Junqiang LYU ; Yongjuan DUAN ; Yi SUN ; Dong LI ; Yunshan WANG ; Xiao HU ; Dongjie XIAO ;
Chinese Journal of Hematology 2014;35(10):891-896
OBJECTIVETo investigate the potential immunomodulatory properties of fetal bone marrow derived mesenchymal stem cells (FBM- MSCs).
METHODSMononuclear cells from the bone marrow of second trimester (14-22 wks) fetus were isolated and cultured for the derivation of MSCs. The derived FBM-MSC cells were characterized via morphology, immunophenotyping and the adipogenic and osteogenic differentiation assays. The immunomodulatory properties of FBM-MSC on lymphocytes were evaluated through the co- culture assay with PHA activated adult peripheral blood mononuclear cells (PBMCs).
RESULTSDerived FBM-MSCs were CD29⁺, CD44⁺, CD49e⁺, CD73⁺, CD90⁺, CD105⁺ and CD31⁻ , CD34⁻ , CD45⁻ , HLA-DR⁻ and can be differentiated into adipocytes and osteocytes. When co-cultured with PHA-activated PBMCs, FBM-MSCs inhibited the proliferation of lymphocytes up to 96% and down-regulated the secretion of inflammatory cytokines such as IFN-γ and TNF-α up to 90.9% and 58.4% respectively. When compared with FBM-MSCs cultured alone, the expression of MSCs derived immunomodulatory cytokines, such as IDO, TSG-6 and TGF-β, was up-regulated significantly in the co-culture system.
CONCLUSIONMSC derived from fetal bone marrow demonstrated immunosuppressive effects on adult PBMCs in vitro. MSC-derived cytokines like IDO, TSG-6 and TGF-β may be critical for FBM-MSCs mediated immunosuppressive function.
Adult ; Bone Marrow ; Bone Marrow Cells ; cytology ; immunology ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Coculture Techniques ; Cytokines ; Hematopoietic Stem Cells ; Humans ; Immune Tolerance ; Immunophenotyping ; In Vitro Techniques ; Leukocytes, Mononuclear ; Lymphocytes ; Mesenchymal Stromal Cells ; cytology ; immunology ; Osteogenesis
4.Immunomodulatory effect of UC-MSC on function of immunocytes of rats with collagen type II induced arthritis.
Jian GU ; Chuan-Ming LIN ; Wei GU ; Xin-Zhen CAI ; Zou LI ; Min-Min REN ; Xing SUN ; Jun NI ; Lian-Jun SHEN ; Wei WU ; Bin HE ; Mei SUN ; Yu ZHANG
Journal of Experimental Hematology 2014;22(1):166-170
This study was purposed to observe the influence of umbilical cord mesenchymal stem cells (UC-MSC) on the peripheral blood CD4(+)CD25(+)regulatory T cells (Treg), Th17 cells and neutrophils in rats with collagen type II-induced arthritis(CIA), and to explore the regulating effect of UC-MSC transplantation on immunocyte subgroup. The rats wee divided into 3 groups: CIA group (model group), UC-MSC treated group and blank control group. The CIA rats were injected with UC-MSC via tail vein. The percentage of CD4(+)CD25(+) cells in peripheral blood and the expression of NCD11b on neutrophil surface in CIA rates was detected by flow cytometry (FCM), and the serum interleukin-17 (IL-17) was observed by enzyme-linked immunosorbent assay (ELISA). The results showed that the mean fluorescence intensity(MFI) of NCD11b and the level of IL-17 in the model group were significantly higher than those in the blank control group, and the ratio of CD4(+)CD25(+) cells were significantly lower (P < 0.05). The MIF of NCD11b and the level of IL-17 in the UC-MSC treated group were significantly lower than that in the model group (P < 0.05), while the proportion of CD4(+)CD25(+) Treg increased (P < 0.05). Since the fifth week, the above indicators in the UC-MSC group have almostly approached the control group. It is concluded that the UC-MSC can increase peripheral blood Treg proportion in CIA rat, inhibit the secretion of Th17 and the activity of neutrophils, reduce the immune inflammation reaction, decrease the release of proinflammatory factor, and induce immune reconstruction.
Animals
;
Arthritis, Experimental
;
immunology
;
therapy
;
Female
;
Interleukin-17
;
metabolism
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells
;
cytology
;
Neutrophils
;
immunology
;
Rats
;
Rats, Sprague-Dawley
;
Th17 Cells
;
immunology
;
Umbilical Cord
;
cytology
5.Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine.
Matthew B MURPHY ; Kathryn MONCIVAIS ; Arnold I CAPLAN
Experimental & Molecular Medicine 2013;45(11):e54-
Mesenchymal stem cells (MSCs) are partially defined by their ability to differentiate into tissues including bone, cartilage and adipose in vitro, but it is their trophic, paracrine and immunomodulatory functions that may have the greatest therapeutic impact in vivo. Unlike pharmaceutical treatments that deliver a single agent at a specific dose, MSCs are site regulated and secrete bioactive factors and signals at variable concentrations in response to local microenvironmental cues. Significant progress has been made in understanding the biochemical and metabolic mechanisms and feedback associated with MSC response. The anti-inflammatory and immunomodulatory capacity of MSC may be paramount in the restoration of localized or systemic conditions for normal healing and tissue regeneration. Allogeneic MSC treatments, categorized as a drug by regulatory agencies, have been widely pursued, but new studies demonstrate the efficacy of autologous MSC therapies, even for individuals affected by a disease state. Safety and regulatory concerns surrounding allogeneic cell preparations make autologous and minimally manipulated cell therapies an attractive option for many regenerative, anti-inflammatory and autoimmune applications.
Animals
;
*Cellular Microenvironment
;
Humans
;
*Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells/cytology/immunology/*metabolism
;
Regenerative Medicine/*methods
6.The potential use of mesenchymal stem cells in hematopoietic stem cell transplantation.
Eun Jung KIM ; Nayoun KIM ; Seok Goo CHO
Experimental & Molecular Medicine 2013;45(1):e2-
In the last 10 years, mesenchymal stem cells (MSCs) have emerged as a therapeutic approach to regenerative medicine, cancer, autoimmune diseases, and many more due to their potential to differentiate into various tissues, to repair damaged tissues and organs, and also for their immunomodulatory properties. Findings in vitro and in vivo have demonstrated immune regulatory function of MSCs and have facilitated their application in clinical trials, such as those of autoimmune diseases and chronic inflammatory diseases. There has been an increasing interest in the role of MSCs in allogeneic hematopoietic stem cell transplantation (HSCT), including hematopoietic stem cell engraftment and the prevention and treatment of graft-versus-host disease (GVHD), and their therapeutic potential has been reported in numerous clinical trials. Although the safety of clinical application of MSCs is established, further modifications to improve their efficacy are required. In this review, we summarize advances in the potential use of MSCs in HSCT. In addition, we discuss their use in clinical trials of the treatment of GVHD following HSCT, the immunomodulatory capacity of MSCs, and their regenerative and therapeutic potential in the field of HSCT.
Animals
;
Chimerism
;
Clinical Trials as Topic
;
Graft vs Host Disease/immunology/therapy
;
*Hematopoietic Stem Cell Transplantation
;
Humans
;
Immunomodulation
;
Mesenchymal Stromal Cells/*cytology/immunology
7.Immunomodulatory effects of human amniotic membrane-derived mesenchymal stem cells.
Jung Won KANG ; Hye Cheong KOO ; Sun Young HWANG ; Sung Keun KANG ; Jeong Chan RA ; Moon Han LEE ; Yong Ho PARK
Journal of Veterinary Science 2012;13(1):23-31
Human amniotic membrane-derived mesenchymal stem cells (hAM-MSCs) are capable of differentiating into several lineages and possess immunomodulatory properties. In this study, we investigated the soluble factor-mediated immunomodulatory effects of hAM-MSCs. Mitogen-induced peripheral blood mononuclear cell (PBMC) proliferation was suppressed by hAM-MSCs in a dose-dependent manner as well as hAM-MSC culture supernatant. Moreover, interferon-gamma and interleukin (IL)-17 production significantly decreased from PBMC, whereas IL-10 from PBMCs and transforming growth factor beta (TGF-beta) production from hAM-MSCs significantly increased in co-cultures of hAM-MSCs and PBMCs. Production of several MSC factors, including hepatocyte growth factor (HGF), TGF-beta, prostaglandin E2 (PGE2), and indoleamine 2, 3 dioxygenase (IDO), increased significantly in hAM-MSCs co-cultured with PBMCs. These results indicate that the immunomodulatory effects of hAM-MSCs may be associated with soluble factors (TGF-beta, HGF, PGE2, and IDO), suggesting that hAM-MSCs may have potential clinical use in regenerative medicine.
Amnion/cytology/*immunology
;
Cell Differentiation/immunology
;
Coculture Techniques
;
Dinoprostone/genetics/immunology
;
Female
;
Hepatocyte Growth Factor/genetics/immunology
;
Humans
;
Immunologic Factors/*immunology
;
Immunophenotyping
;
Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics/immunology
;
Interferon-gamma/immunology
;
Interleukin-10/analysis/immunology
;
Interleukin-17/analysis/immunology
;
Leukocytes, Mononuclear/cytology/immunology
;
Mesenchymal Stem Cells/cytology/*immunology
;
Pregnancy
;
RNA, Messenger/chemistry/genetics
;
Regenerative Medicine/methods
;
Reverse Transcriptase Polymerase Chain Reaction
;
Transforming Growth Factor beta/genetics/immunology
8.Effect of bone-marrow mesenchymal stem cells on the immune function of aging rats.
Zhi-hong WANG ; Kun-yuan GUO ; Yu-lian YANG ; Kun LIU ; Jie LI ; Xue-yun ZHOU ; Qing-mei HE
Journal of Southern Medical University 2011;31(1):146-150
OBJECTIVETo investigate the effect of transplantation of bone-marrow mesenchymal stem cells (MSCs) on the immune functions of aging rats.
METHODSHealthy SD rats were randomized into normal control, aging model group and MSCs group. The aging model was established by daily subcutaneous injection of D-galactose for 4 consecutive months. MSCs were isolated from the bone marrow of adult SD rats and injected (3×10(6) MSCs) in rats in the MSCs group via the tail vein once a week for 4 weeks. The spleen index, activity of T lymphocytes and the levels of IL-2 and IL-10 in spleen were measured, and the pathological changes of the spleen were observed after the treatments.
RESULTSMSCs transplantation enhanced the cellular immune function of aging rats manifested by obviously increased spleen index, activity of T lymphocyte and the level of IL-2, and lowered level of IL-10 in the spleen. The rats in the aging model group showed serious spleen injury, which was obviously lessened by MSCs injection.
CONCLUSIONMSCs transplantation can improve the cellular immune function of aging rats and ameliorate spleen injury induced by D-galactose.
Aging ; immunology ; Animals ; Bone Marrow Cells ; cytology ; Female ; Galactose ; adverse effects ; Interleukin-10 ; blood ; Interleukin-2 ; blood ; Male ; Mesenchymal Stem Cell Transplantation ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Spleen ; immunology ; T-Lymphocytes ; immunology
9.Soluble mediators from mesenchymal stem cells suppress T cell proliferation by inducing IL-10.
Seung Ha YANG ; Min Jung PARK ; Il Hee YOON ; Su Young KIM ; So Hee HONG ; Jin Young SHIN ; Hye Young NAM ; Yong Hee KIM ; Bongi KIM ; Chung Gyu PARK
Experimental & Molecular Medicine 2009;41(5):315-324
Mesenchymal stem cells (MSCs) can inhibit T cell proliferation; however, the underlying mechanisms are not clear. In this study, we investigated the mechanisms of the immunoregulatory activity of MSCs on T cells. Irradiated MSCs co-cultured with either naive or pre-activated T cells in a mixed lymphocyte reaction (MLR) significantly suppressed T cell proliferation in a dose-dependent manner, irrespective of allogeneic disparity between responders and MSCs. Transwell assays revealed that the suppressive effect was primarily mediated by soluble factors that induced apoptosis. Splenocytes stimulated with alloantigen in the presence of the MSC culture supernatant (CS) produced a significant amount of IL-10, which was attributed to an increase in the number of IL-10 secreting cells, confirmed by an ELISPOT assay. The blockade of IL-10 and IL-10 receptor interaction by anti-IL-10 or anti-IL-10-receptor antibodies abrogated the suppressive capacity of MSC CS, indicating that IL-10 plays a major role in the suppression of T cell proliferation. The addition of 1-methyl-DL-tryptophan (1-MT), an indoleamine 2,3-dioxygenase (IDO) inhibitor, also restored the proliferative capacity of T cells. In conclusion, we demonstrated that soluble mediators from culture supernatant of MSCs could suppress the proliferation of both naive and pre-activated T cells in which IL-10 and IDO play important roles.
Animals
;
Cell Proliferation
;
Cells, Cultured
;
Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors/metabolism
;
Interleukin-10/*biosynthesis
;
*Lymphocyte Activation
;
Lymphokines/pharmacology
;
Mesenchymal Stem Cells/cytology/*metabolism
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Receptors, Interleukin-10/metabolism
;
T-Lymphocytes/cytology/*immunology/metabolism
;
Tryptophan/analogs & derivatives/pharmacology
10.Soluble mediators from mesenchymal stem cells suppress T cell proliferation by inducing IL-10.
Seung Ha YANG ; Min Jung PARK ; Il Hee YOON ; Su Young KIM ; So Hee HONG ; Jin Young SHIN ; Hye Young NAM ; Yong Hee KIM ; Bongi KIM ; Chung Gyu PARK
Experimental & Molecular Medicine 2009;41(5):315-324
Mesenchymal stem cells (MSCs) can inhibit T cell proliferation; however, the underlying mechanisms are not clear. In this study, we investigated the mechanisms of the immunoregulatory activity of MSCs on T cells. Irradiated MSCs co-cultured with either naive or pre-activated T cells in a mixed lymphocyte reaction (MLR) significantly suppressed T cell proliferation in a dose-dependent manner, irrespective of allogeneic disparity between responders and MSCs. Transwell assays revealed that the suppressive effect was primarily mediated by soluble factors that induced apoptosis. Splenocytes stimulated with alloantigen in the presence of the MSC culture supernatant (CS) produced a significant amount of IL-10, which was attributed to an increase in the number of IL-10 secreting cells, confirmed by an ELISPOT assay. The blockade of IL-10 and IL-10 receptor interaction by anti-IL-10 or anti-IL-10-receptor antibodies abrogated the suppressive capacity of MSC CS, indicating that IL-10 plays a major role in the suppression of T cell proliferation. The addition of 1-methyl-DL-tryptophan (1-MT), an indoleamine 2,3-dioxygenase (IDO) inhibitor, also restored the proliferative capacity of T cells. In conclusion, we demonstrated that soluble mediators from culture supernatant of MSCs could suppress the proliferation of both naive and pre-activated T cells in which IL-10 and IDO play important roles.
Animals
;
Cell Proliferation
;
Cells, Cultured
;
Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors/metabolism
;
Interleukin-10/*biosynthesis
;
*Lymphocyte Activation
;
Lymphokines/pharmacology
;
Mesenchymal Stem Cells/cytology/*metabolism
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Receptors, Interleukin-10/metabolism
;
T-Lymphocytes/cytology/*immunology/metabolism
;
Tryptophan/analogs & derivatives/pharmacology

Result Analysis
Print
Save
E-mail