1.Effects of human umbilical cord-derived mesenchymal stem cell therapy for cavernous nerve injury-induced erectile dysfunction in the rat model.
Wei WANG ; Ying LIU ; Zi-Hao ZHOU ; Kun PANG ; Jing-Kai WANG ; Peng-Fei HUAN ; Jing-Ru LU ; Tao ZHU ; Zuo-Bin ZHU ; Cong-Hui HAN
Asian Journal of Andrology 2025;27(4):508-515
Stem cell treatment may enhance erectile dysfunction (ED) in individuals with cavernous nerve injury (CNI). Nevertheless, no investigations have directly ascertained the implications of varying amounts of human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) on ED. We compare the efficacy of three various doses of HUC-MSCs as a therapeutic strategy for ED. Sprague-Dawley rats (total = 175) were randomly allocated into five groups. A total of 35 rats underwent sham surgery and 140 rats endured bilateral CNI and were treated with vehicles or doses of HUC-MSCs (1 × 10 6 cells, 5 × 10 6 cells, and 1 × 10 7 cells in 0.1 ml, respectively). Penile tissues were harvested for histological analysis on 1 day, 3 days, 7 days, 14 days, 28 days, 60 days, and 90 days postsurgery. It was found that varying dosages of HUC-MSCs enhanced the erectile function of rats with bilateral CNI and ED. Moreover, there was no significant disparity in the effectiveness of various dosages of HUC-MSCs. However, the expression of endothelial markers (rat endothelial cell antigen-1 [RECA-1] and endothelial nitric oxide synthase [eNOS]), smooth muscle markers (alpha smooth muscle actin [α-SMA] and desmin), and neural markers (neurofilament [RECA-1] and neurogenic nitric oxide synthase [nNOS]) increased significantly with prolonged treatment time. Masson's staining demonstrated an increased in the smooth muscle cell (SMC)/collagen ratio. Significant changes were detected in the microstructures of various types of cells. In vivo imaging system (IVIS) analysis showed that at the 1 st day, the HUC-MSCs implanted moved to the site of damage. Additionally, the oxidative stress levels were dramatically reduced in the penises of rats administered with HUC-MSCs.
Male
;
Animals
;
Erectile Dysfunction/metabolism*
;
Rats, Sprague-Dawley
;
Mesenchymal Stem Cell Transplantation/methods*
;
Rats
;
Penis/pathology*
;
Humans
;
Disease Models, Animal
;
Umbilical Cord/cytology*
;
Peripheral Nerve Injuries/complications*
;
Mesenchymal Stem Cells
;
Nitric Oxide Synthase Type III/metabolism*
;
Actins/metabolism*
;
Nitric Oxide Synthase Type I/metabolism*
2.Cell therapy for end-stage liver disease: Current state and clinical challenge.
Lin ZHANG ; Yuntian DENG ; Xue BAI ; Xiao WEI ; Yushuang REN ; Shuang CHEN ; Hongxin DENG
Chinese Medical Journal 2024;137(23):2808-2820
Liver disease involves a complex interplay of pathological processes, including inflammation, hepatocyte necrosis, and fibrosis. End-stage liver disease (ESLD), such as liver failure and decompensated cirrhosis, has a high mortality rate, and liver transplantation is the only effective treatment. However, to overcome problems such as the shortage of donor livers and complications related to immunosuppression, there is an urgent need for new treatment strategies that need to be developed for patients with ESLD. For instance, hepatocytes derived from donor livers or stem cells can be engrafted and multiplied in the liver, substituting the host hepatocytes and rebuilding the liver parenchyma. Stem cell therapy, especially mesenchymal stem cell therapy, has been widely proved to restore liver function and alleviate liver injury in patients with severe liver disease, which has contributed to the clinical application of cell therapy. In this review, we discussed the types of cells used to treat ESLD and their therapeutic mechanisms. We also summarized the progress of clinical trials around the world and provided a perspective on cell therapy.
Humans
;
Cell- and Tissue-Based Therapy/methods*
;
End Stage Liver Disease/therapy*
;
Hepatocytes
;
Mesenchymal Stem Cell Transplantation
;
Stem Cell Transplantation
3.Research progress on bone repair biomaterials with the function of recruiting endogenous mesenchymal stem cells.
Junjie ZHAO ; Yuhao ZHAO ; Yanchuan PU ; Xiyu WANG ; Pengfei HUANG ; Zhaokun ZHANG ; Haiyan ZHAO
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(11):1408-1413
OBJECTIVE:
To review the research progress on bone repair biomaterials with the function of recruiting endogenous mesenchymal stem cells (MSCs).
METHODS:
An extensive review of the relevant literature on bone repair biomaterials, particularly those designed to recruit endogenous MSCs, was conducted, encompassing both domestic and international studies from recent years. The construction methods and optimization strategies for these biomaterials were summarized. Additionally, future research directions and focal points concerning this material were proposed.
RESULTS:
With the advancement of tissue engineering technology, bone repair biomaterials have increasingly emerged as an ideal solution for addressing bone defects. MSCs serve as the most critical "seed cells" in bone tissue engineering. Historically, both MSCs and their derived exosomes have been utilized in bone repair biomaterials; however, challenges such as limited sources of MSCs and exosomes, low survival rates, and various other issues have persisted. To address these challenges, researchers are combining growth factors, bioactive peptides, specific aptamers, and other substances with biomaterials to develop constructs that facilitate stem cell recruitment. By optimizing mechanical properties, promoting vascular regeneration, and regulating the microenvironment, it is possible to create effective bone repair biomaterials that enhance stem cell recruitment.
CONCLUSION
In comparison to cytokines, phages, and metal ions, bioactive peptides and aptamers obtained through screening exhibit more specific and targeted recruitment functions. Future development directions for bone repair biomaterials will involve the modification of peptides and aptamers with targeted recruitment capabilities in biological materials, as well as the optimization of the mechanical properties of these materials to enhance vascular regeneration and adjust the microenvironment.
Mesenchymal Stem Cells/metabolism*
;
Biocompatible Materials/chemistry*
;
Tissue Engineering/methods*
;
Humans
;
Bone Regeneration
;
Tissue Scaffolds/chemistry*
;
Animals
;
Bone and Bones
;
Mesenchymal Stem Cell Transplantation/methods*
;
Exosomes/metabolism*
;
Intercellular Signaling Peptides and Proteins/metabolism*
;
Osteogenesis
4.Recent Progress on Pharmaceutical Properties of Extracellular Vesicles from Mesenchymal Stem Cells--Review.
Yu-Shuang LIU ; Yuan SUN ; Zi-Kuan GUO
Journal of Experimental Hematology 2023;31(4):1247-1251
Mesenchymal stem cells (MSCs) have been officially approved in many countries to treat graft-versus-host disease, autoimmune disorders and those associated with tissue regeneration after hematopoietic stem cell transplantation. Studies in recent years have confirmed that MSC acts mainly through paracrine mechanism, in which extracellular vesicles secreted by MSC (MSC-EV) play a central role. MSC-EV has overwhelming advantages over MSC itself in the setting of adverse effects in clinical application, indicating that MSC-EV might take the place of its parent cells to be a potentially therapeutic tool for "cell-free therapy". The pharmaceutical properties of MSC-EV largely depend upon the practical and optimal techniques including large-scale expansion of MSC, the modification of MSC based on the indications and the in vivo dynamic features of MSC-EV, and the methods for preparing and harvesting large amounts of MSC-EV. The recent progresses on the issues above will be briefly reviewed.
Humans
;
Extracellular Vesicles
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Mesenchymal Stem Cell Transplantation/methods*
;
Mesenchymal Stem Cells
;
Pharmaceutical Preparations
5.Clinical research in cell therapy of liver diseases: progress and challenges.
Lei SHI ; Ze Rui WANG ; Tian Tian LI ; En Qiang LINGHU ; Fu Sheng WANG
Chinese Journal of Hepatology 2022;30(3):237-243
The high incidence of chronic liver disease is a serious threat to public health, and the current comprehensive internal medicine treatment is ineffective. Liver transplantation is limited by the shortage of liver source and post-transplant rejection, and thus unmet the clinical needs. More importantly, cell therapy shows great promise for the treatment of chronic liver disease. Over recent years, domestic and foreign scholars have carried out a variety of cell therapy preclinical and clinical trials for critical liver disease, and achieved certain results, providing new methods for the treatment of chronic liver diseases. This review discusses the cell therapy research status and application progress, various existing problems and challenges, and key issues of mesenchymal stem cells in the treatment of chronic liver diseases.
Cell- and Tissue-Based Therapy
;
Humans
;
Liver Diseases/therapy*
;
Liver Transplantation/methods*
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stem Cells
6.Human umbilical cord Wharton's jelly-derived mesenchymal stem cell transplantation could improve diabetic intracavernosal pressure.
Jian-Hong WU ; Dong-Ya WANG ; Lu SHENG ; Wei-Qing QIAN ; Shu-Jie XIA ; Qi JIANG
Asian Journal of Andrology 2022;24(2):171-175
Mesenchymal stem cells (MSCs) secrete various cytokines with angiogenic and neuroprotective effects. This study aimed to assess the effects of human umbilical cord Wharton's jelly-derived MSCs (hWJ-MSCs) on diabetes-related intracavernosal pressure (ICP) impairment in rats. hWJ-MSCs were isolated from human umbilical cord Wharton's jelly and transplanted into the corpus cavernosum of streptozotocin (STZ)-induced diabetic rats by unilateral injection. The erectile function was evaluated at 4 weeks, as well as the expression levels of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), endothelial nitric oxide synthase (eNOS), and insulin-like growth factor 1 (IGF1). STZ-induced diabetic rats showed impaired ICP, which was significantly improved by hWJ-MSC treatment. VEGF, eNOS, IGF1, and bFGF expression levels were higher in hWJ-MSC injection sites than those in control ones in STZ-induced diabetic rats. These results suggest that hWJ-MSC transplantation might improve diabetic erectile dysfunction through increased production of paracrine growth factors, highlighting a novel potential therapeutic option for erectile dysfunction.
Animals
;
Cell Differentiation
;
Diabetes Mellitus, Experimental/therapy*
;
Erectile Dysfunction/therapy*
;
Humans
;
Male
;
Mesenchymal Stem Cell Transplantation/methods*
;
Rats
;
Umbilical Cord
;
Vascular Endothelial Growth Factor A
;
Wharton Jelly
7.Dental stem cell-derived extracellular vesicles as promising therapeutic agents in the treatment of diseases.
Ye LI ; Xu DUAN ; Yinxue CHEN ; Bingyun LIU ; Gang CHEN
International Journal of Oral Science 2022;14(1):2-2
Dental stem cells (DSCs), an important source of mesenchymal stem cells (MSCs), can be easily obtained by minimally invasive procedures and have been used for the treatment of various diseases. Classic paradigm attributed the mechanism of their therapeutic action to direct cell differentiation after targeted migration, while contemporary insights into indirect paracrine effect opened new avenues for the mystery of their actual low engraftment and differentiation ability in vivo. As critical paracrine effectors, DSC-derived extracellular vesicles (DSC-EVs) are being increasingly linked to the positive effects of DSCs by an evolving body of in vivo studies. Carrying bioactive contents and presenting therapeutic potential in certain diseases, DSC-EVs have been introduced as promising treatments. Here, we systematically review the latest in vivo evidence that supports the therapeutic effects of DSC-EVs with mechanistic studies. In addition, current challenges and future directions for the clinical translation of DSC-EVs are also highlighted to call for more attentions to the (I) distinguishing features of DSC-EVs compared with other types of MSC-EVs, (II) heterogeneity among different subtypes of DSC-derived EVs, (III) action modes of DSC-EVs, (IV) standardization for eligible DSC-EVs and (V) safety guarantee for the clinical application of DSC-EVs. The present review would provide valuable insights into the emerging opportunities of DSC-EVs in future clinical applications.
Cell Differentiation
;
Extracellular Vesicles/metabolism*
;
Mesenchymal Stem Cell Transplantation/methods*
;
Mesenchymal Stem Cells/metabolism*
8.Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics.
Protein & Cell 2020;11(10):707-722
The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.
Adoptive Transfer
;
Alveolar Epithelial Cells
;
pathology
;
Animals
;
Apoptosis
;
Betacoronavirus
;
Body Fluids
;
metabolism
;
CD4-Positive T-Lymphocytes
;
immunology
;
Clinical Trials as Topic
;
Coinfection
;
prevention & control
;
therapy
;
Coronavirus Infections
;
complications
;
immunology
;
Disease Models, Animal
;
Endothelial Cells
;
pathology
;
Extracorporeal Membrane Oxygenation
;
Genetic Therapy
;
methods
;
Genetic Vectors
;
administration & dosage
;
therapeutic use
;
Humans
;
Immunity, Innate
;
Inflammation Mediators
;
metabolism
;
Lung
;
pathology
;
physiopathology
;
Mesenchymal Stem Cell Transplantation
;
methods
;
Mesenchymal Stem Cells
;
physiology
;
Multiple Organ Failure
;
etiology
;
prevention & control
;
Pandemics
;
Pneumonia, Viral
;
complications
;
immunology
;
Respiratory Distress Syndrome, Adult
;
immunology
;
pathology
;
therapy
;
Translational Medical Research
9.Epithelial defect repair in the auricle and auditory meatus by grafting with cultured adipose-derived mesenchymal stem cell aggregate-extracellular matrix.
Wen-Jin ZHANG ; Lei-Guo MING ; Jian-Jun SUN
Chinese Medical Journal 2019;132(6):680-689
BACKGROUND:
Several patients experience persistent otorrhea after a flawless surgical procedure because of insufficient epithelial healing. Several efforts, such as autologous tissue allograft and xenograft, have been made to halt otorrhea. However, a stable technology to induce temporal epithelial repair is yet to be established. Therefore, this study aims to investigate whether implantation of seeding adipose-derived mesenchymal stem cell (ADMSC) aggregates on extracellular matrix (ECM; herein, ADMSC aggregate-ECM) into damaged skin wound promotes skin regeneration.
METHODS:
ADMSC aggregate-ECM was prepared using a previously described procedure that isolated ADMSCs from rabbits and applied to the auricle and auditory meatus wound beds of New Zealand white rabbits. Wound healing was assessed by general observation and hematoxylin and eosin (H&E) staining. Secretion of growth factor of the tissue was evaluated by western blotting. Two other groups, namely, ECM and control, were used. Comparisons of three groups were conducted by one-way analysis of variance analysis.
RESULTS:
ADMSCs adhered tightly to the ECM and quickly formed cell sheets. At 2 weeks, general observation and H&E staining indicated that the wound healing rates in the ADMSC aggregate-ECM (69.02 ± 6.36%) and ECM (59.32 ± 4.10%) groups were higher than that in the control group (43.74 ± 12.15%; P = 0.005, P < 0.001, respectively) in ear auricle excisional wounds. At 7 weeks, The scar elevation index was evidently reduced in the ADMSC aggregate-ECM (2.08 ± 0.87) and ECM (2.31 ± 0.33) groups compared with the control group (4.06 ± 0.45; P < 0.001, P < 0.001, respectively). In addition, the scar elevation index of the ADMSC aggregate-ECM group reached the lowest rate 4 weeks in advance. In auditory meatus excisional wounds, the ADMSC aggregate-ECM group had the largest range of normal skin-like structure at 4 weeks. The ADMSC aggregate-ECM and ECM groups secreted increased amounts of growth factors that contributed to skin regeneration at weeks 1 and 2, respectively.
CONCLUSIONS
ADMSC aggregate-ECM and ECM are effective repair materials for wound healing, especially ADMSC aggregate-ECM. This approach will provide a meaningful experimental basis for mastoid epithelium repair in subsequent clinical trials.
Adipose Tissue
;
cytology
;
Animals
;
Cell Differentiation
;
physiology
;
Cell Proliferation
;
physiology
;
Cells, Cultured
;
Ear Auricle
;
cytology
;
Extracellular Matrix
;
chemistry
;
Flow Cytometry
;
Mesenchymal Stem Cell Transplantation
;
methods
;
Mesenchymal Stem Cells
;
cytology
;
Microscopy, Electron, Scanning
;
Osteogenesis
;
physiology
;
Rabbits
;
Real-Time Polymerase Chain Reaction
10.Current advances for bone regeneration based on tissue engineering strategies.
Rui SHI ; Yuelong HUANG ; Chi MA ; Chengai WU ; Wei TIAN
Frontiers of Medicine 2019;13(2):160-188
Bone tissue engineering (BTE) is a rapidly developing strategy for repairing critical-sized bone defects to address the unmet need for bone augmentation and skeletal repair. Effective therapies for bone regeneration primarily require the coordinated combination of innovative scaffolds, seed cells, and biological factors. However, current techniques in bone tissue engineering have not yet reached valid translation into clinical applications because of several limitations, such as weaker osteogenic differentiation, inadequate vascularization of scaffolds, and inefficient growth factor delivery. Therefore, further standardized protocols and innovative measures are required to overcome these shortcomings and facilitate the clinical application of these techniques to enhance bone regeneration. Given the deficiency of comprehensive studies in the development in BTE, our review systematically introduces the new types of biomimetic and bifunctional scaffolds. We describe the cell sources, biology of seed cells, growth factors, vascular development, and the interactions of relevant molecules. Furthermore, we discuss the challenges and perspectives that may propel the direction of future clinical delivery in bone regeneration.
Animals
;
Bone Regeneration
;
Cell Differentiation
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
metabolism
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stem Cells
;
cytology
;
Osteogenesis
;
Tissue Engineering
;
methods
;
Tissue Scaffolds

Result Analysis
Print
Save
E-mail