1.Preparation process and change law of substances of Hydrargyrum Chloratum Compositum.
Yu YANG ; Ping HUANG ; Jing-Jing YANG ; Qin-Wan HUANG
China Journal of Chinese Materia Medica 2025;50(8):2137-2144
To optimize the traditional refining process of Hydrargyrum Chloratum Compositum(HCC) and explore the change law of substances before and after refining, this study applied the hierarchical analysis method(AHP)-entropy weight method, using appearance, yield, and mercuric chloride content as evaluation indexes. The temperature and time of mild and strong fire were examined as single factors, and an L_9(3~4) orthogonal experiment was used to optimize the refining process. An infrared thermal imaging platform was set up to record the temperature changes on the surface of the tank, aiming to establish a standardized operating procedure for the refining process. Elemental changes, physical phase changes, and thermal property changes of the materials before and after refining were analyzed using atomic absorption spectrophotometry(AAS), X-ray diffraction(XRD) and differential scanning calorimetry(DSC). The results showed that the average overall score of the finished product obtained from the optimized HCC refining process(with mild fire temperature of 102 ℃, mild fire refining time of 30 min, strong fire temperature of 178 ℃, and strong fire refining time of 68 min) was 91.59, with an RSD of 0.076%, indicating that the process is stable and feasible. Combined with thermal imaging data and related research results, it was found that, at the strong fire temperature, mercury ions and nitrate ions generated mercuric chloride under the catalysis of other ions. The mercury content of mercurous chloride, mercuric chloride synthesized from nitric acid, HCC, and the pre-refined sample was 84.535%, 72.376%, 70.838%, and 41.334%, respectively. The highest intensity of the(120) diffraction peak for HCC appeared around 20.36°, but the residual fit value was larger. The synthesis of mercuric chloride from HCC and nitric acid showed an exothermic peak at 190-204 ℃, with the peak shape exhibiting a rightward trend. This study optimized the traditional refining process of HCC and analyzed the elemental changes, physical phase changes, and thermal property changes before and after refining. The findings provide experimental data for exploring the changing patterns in the refining process of HCC and its pharmacological value, as well as for standardizing the traditional refining process in clinical practice.
Drugs, Chinese Herbal/chemistry*
;
X-Ray Diffraction
;
Temperature
;
Calorimetry, Differential Scanning
;
Mercuric Chloride/chemistry*
2.Scientific analysis and usage reassessment of suspected medicinal cinnabar unearthed from Mawangdui Tomb No.3 of the Han Dynasty.
Ning-Ning XU ; Ting-Yan REN ; Ming-Jie LI ; Pan XIAO ; Guo-Hui SHEN ; Ji-Qing BAI ; Qi LIU
China Journal of Chinese Materia Medica 2025;50(11):2915-2923
Cinnabar(HgS) was widely used in ancient times for medicinal purposes, religious rituals, and pigments. A group of bright red powdery clumps was excavated from Mawangdui Tomb No.3 of the Han Dynasty. Early studies considered the clumps as evidence of cinnabar's medicinal use during the Qin-Han period. This study employed a range of archaeometric techniques, including extended-depth-of-field stereo imaging, micro-CT, scanning electron microscopy-energy dispersive spectroscopy, Raman spectroscopy, and Fourier transform infrared spectrometry FTIR, to systematically analyze the material composition and structural characteristics of these remains. The results revealed that the cinnabar particles were granular, finely ground, and tightly bound to silk matrix, with no detectable excipients typically associated with medicinal formulations. Micro-CT imaging indicated a well-preserved textile structure, with clear signs of sedimentary accumulation and mechanical damage. Based on historical and archaeological studies, this study suggested that these remains were more likely degraded accumulations of cinnabar-colored silk textiles rather than medicinal cinnabar. By clarifying the diversity of ancient cinnabar applications and preservation states, this study provides new insights for the archaeological identification of mineral medicinal materials and contributes to the standardized study of Chinese medicinal materials and understanding of the historical use of cinnabar.
History, Ancient
;
China
;
Humans
;
Medicine, Chinese Traditional/history*
;
Archaeology
;
Drugs, Chinese Herbal/history*
;
Spectroscopy, Fourier Transform Infrared
;
Spectrum Analysis, Raman
;
Mercury Compounds
3.Determination of methylmercury in urine by direct mercury analyzer.
Fu WANG ; Yun Ting ZHANG ; Fan SU ; Cheng Peng HUANG ; Lan LUO
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(4):304-306
Objective: To develop asolvent extraction-direct mercury analyzer method for determination of methylmercury in urine. Methods: After the urinehydrolyzesd by hydrobromic acid, methylmercury was extracted by tolueneand reverse-extracted from L-cysteine solution, it was then detectedbydirect mercuryanalyzer. Results: The linear range was 0.2-50.0 μg/L, and the related coefficient was 0.9999. The relative standard deviations (RSD) within the group were 5.04%-6.64%, and the RSD between the group were 5.65%-8.11 %. The average recovery efficiencies were 85.4%-95.5%. The detection limitation was 0.0482 μg/L and the quantification concentrations was 0.1607 μg/L. Conclusion: The method, which has low detection limit, high sensitivity, easy to operate, is stability for the determination of methylmercury in urine.
Mercury
;
Methylmercury Compounds
4.Mercury species analysis and tissue distribution in rats after continuous administration of Cinnabaris.
Chun-Jiao HE ; Jiao-Yang LUO ; Hao-Nan RUAN ; Ya-Wen LUO ; Tong-Wei KE ; Xu-Hua QIN ; Mei-Hua YANG
China Journal of Chinese Materia Medica 2023;48(22):6173-6182
Cinnabaris is a traditional Chinese medicine(TCM) commonly used for sedation and tranquilization in clinics, and its safety has always been a concern. This study intends to investigate the species and tissue distribution of mercury in rats after continuous administration of Cinnabaris. In the experiment, 30 rats were randomly divided into the control group(equivalent to 0.5% carboxy-methyl cellulose sodium), low-dose Cinnabaris group(0.2 g·kg~(-1)), high-dose Cinnabaris group(2 g·kg~(-1)), pseudogerm-free control group(equivalent to 0.5% sodium carboxymethyl cellulose), and pseudogerm-free Cinnabaris group(2 g·kg~(-1)). They were orally administered for 30 consecutive days. Ultrasound-assisted acid extraction method combined with high performance liquid chromatography and inductively coupled plasma-mass spectrometry(HPLC-ICP-MS) was adopted to determine inorganic mercury [Hg(Ⅱ)], methylmercury(MeHg), and ethylmercury(EtHg) in different tissue, plasma, urine, and feces of rats. The optimal detection conditions and extraction methods were optimized, and the linearity(R~2>0.999 3), precision(RSD<7.0%), and accuracy(spike recoveries ranged from 73.05% to 109.5%) of all the mercury species were satisfied, meeting the requirements of analysis. The results of mercury species detection showed that Hg(Ⅱ) was detected in all the tissue of the five experimental groups, and the main accumulating organs were the intestinal tract, stomach, and kidney. MeHg existed at a low concentration in most tissue, and EtHg was not detected in all groups. In addition, pathological examination results showed that hepatocyte vacuolar degeneration, loose cytoplasm, light staining, and mononuclear cell infiltration were observed in the high-dose Cinnabaris group, low-dose Cinnabaris group, and pseudogerm-free Cinnabaris group, with slightly milder lesions in the low-dose Cinnabaris group. Hydrous degeneration of renal tubular epithelium could be seen in the high-dose Cinnabaris group and pseudogerm-free Cinnabaris group, but there was no significant difference between the other groups and the control group. No abnormal changes were found in the brain tissue of rats in each group. This paper studied the different mercury species and tissue distribution in normal and pseudogerm-free rats after continuous administration of Cinnabaris for 30 days and clarified its effects on the tissue structure of the liver, kidney, and brain, which provided supporting evidence for the safety evaluation of Cinnabaris.
Rats
;
Animals
;
Mercury/analysis*
;
Tissue Distribution
;
Methylmercury Compounds/analysis*
;
Chromatography, High Pressure Liquid/methods*
;
Sodium
5.Study on the difference of curative effect of conventional mercury displacement treatment on mercury in brain and kidney.
Zhen Zhen GAO ; Yu Jie PAN ; Jing MA ; Hui Ling LI ; Xue MEI ; Yu Guo SONG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(4):255-259
Objective: To explore the expulsion effect of sodium dimercaptopropanesulfonate (DMPS) on mercury in different organs of mercury poisoning and the therapeutic effect of glutathione (GSH) combined with antioxidant therapy on mercury poisoning. Methods: In February 2019, 50 SPF male SD rats were randomly divided into 5 groups, 10 rats in each group: A (saline negative control group) , B (HgCL2 positive control group) , treatment group (C: intramuscular injection of DMPS 15 mg/kg treatment, D: intramuscular injection of DMPS30 mg/kg treatment, E: intramuscular injection of DMPS 15 mg/kg and intraperitoneal injection of GSH200 mg/kg treatment) . Rats in group B, C, D and E were subcutaneously injected with mercury chloride solution (1 mg/kg) to establish a rat model of subacute mercury poisoning kidney injury. Rats in group A were subcutaneously injected with normal saline. After the establishment of the model, rats in the treatment group were injected with DMPS and GSH. Rats in group A and group B were injected with normal saline. At 21 d (treatment 7 d) and 28 d (treatment 14 d) after exposure, urine and blood samples of 5 rats in each group were collected. Blood biochemistry, urine mercury, urine microalbumin and mercury content in renal cortex, cerebral cortex and cerebellum were detected. Results: After exposure to mercury, the contents of mercury in renal cortex, cerebrum and cerebellum of rats in group B, C, D and E increased, and urine microalbumin increased. Pathology showed renal tubular injury and renal interstitial inflammation. Compared with group B, urinary mercury and renal cortex mercury in group C, D and E decreased rapidly after DMPS treatment, and there was no significant decrease in mercury levels in cerebellum and cerebral cortex of rats, accompanied by transient increase in urinary albumin after DMPS treatment (P<0.05) ; the renal interstitial inflammation in group E was improved after GSH treatment. There was a positive correlation between urinary mercury and the contents of mercury in renal cortex, cerebral cortex and cerebellum (r=0.61, 0.47, 0.48, P<0.05) . Conclusion: DMPS mercury expulsion treatment can significantly reduce the level of metal mercury in the kidney, and there is no significant change in the level of metal mercury in the cortex and cerebellum.
Animals
;
Brain/drug effects*
;
Glutathione
;
Inflammation
;
Kidney/drug effects*
;
Kidney Diseases/chemically induced*
;
Male
;
Mercuric Chloride/therapeutic use*
;
Mercury/urine*
;
Mercury Poisoning/drug therapy*
;
Rats
;
Rats, Sprague-Dawley
;
Saline Solution/therapeutic use*
;
Unithiol/therapeutic use*
6.Study on quality status of mineral medicine Calamina.
Guang-Feng SONG ; Zhi-Jie ZHANG ; Rao-Rao LI ; Chen SONG ; Rui-Chao LIN
China Journal of Chinese Materia Medica 2020;45(2):352-360
In this paper, some quality problems of mineral medicine Calamina and calcined Calamina have been discussed after determination and analysis of the quality parameters of a large number of market samples, and the countermeasures are put forward. According to the XRD results, as well as the results of tests included in Chinese Pharmacopoeia(2015 edition), the authenticity of Calamina and calcined Calamina samples were identified. The content of zinc oxide in samples were determined by the method of determination in Chinese Pharmacopoeia. Individually, inductively coupled plasma mass spectrometry(ICP-MS), inductively coupled plasma atomic emission spectrometry(ICP-AES) and atomic fluorescence spectrometry(AFS) methods were used for the determination of impurity elements and harmful elements in Calamina and calcined Calamina samples. Four kinds of impurity elements of magnesium(Mg), iron(Fe), aluminum(Al), calcium(Ca) and five harmful elements such as lead(Pb), cadmium(Cd), arsenic(As), copper(Cu), mercury(Hg) were measured. The study showed that: ① Fake Calamina products on the market were overflowing; ② The mineral origin of the mainstream Calamina in the market is inconsistent with that stipulated in Chinese Pharmacopoeia(2015 edition); ③ The contents of harmful elements Pb and Cd in Calamina and calcined Calamina are generally higher, while the contents of harmful elements As and Cu in some inferior Calaminae are higher; ④ Parts of calcined Calamina were improperly or inadequately processed. In view of these quality problems, the countermeasures are put forward as follows: ① It is suggested that hydrozincite should be approved as the mineral source of Calamina, and be included by Chinese Pharmacopoeia; ② Strengthen the research on the specificity of Calamina identification methods to improve the quality control level; ③ Strengthen the research on the processing of Calamina, and formulate the limit standards for the content of Pb and Cd in Calamina; ④ Carry out research on the artificial synthesis of Calamina and calcined Calamina, in order to cope with the current shortage of Calamina resources and ensure the sustainable development of Calamina medicinal materials.
Arsenic
;
Cadmium
;
Copper
;
Drug Combinations
;
Drugs, Chinese Herbal/standards*
;
Ferric Compounds/standards*
;
Iron
;
Lead
;
Medicine, Chinese Traditional
;
Mercury
;
Minerals
;
Quality Control
;
Trace Elements/analysis*
;
Zinc Oxide/standards*
7.Unification Is Healing : Psychiatric Contemplation of Korean Peninsula Division and Unification.
Journal of Korean Neuropsychiatric Association 2015;54(4):353-359
Koreans have repeatedly experienced societal traumas, of which Korean Peninsula division and 6.25 are the greatest sources of trauma. Such division and the Korean War have destroyed the concept of "nation community," "town community," and "rational community" in the Korean people. Thus, Korean people have come to 1) live in a society with no recognition of community, 2) obsession with extreme ideologism, 3) lower ability to resolve conflict making societal dissension more serious. For the healing of this trauma, the following projects are needed : 1) foreign case analysis of societal trauma healing, 2) analysis of each subject and healing, 3) rebuilding of nation, town, and ration community in Korean society, 4) creation of artwork that gives introspection to division and its sublimation, 5) take the challenge to sublimate suffering in order to create a higher mental state of individual and society. Thus, the professional role of a psychiatrist is important. First, administer professional treatment to those in need of medical psychiatric help who are suffering from societal trauma resulting from division. Second, grasp the mental and societal difficulties and special help needed for the various traumas. Third, help in creation of artwork dealing with the pain of division. Fourth, create a more culturally sensitive and appropriate psychiatric support method for North Korean Refugees in South Korea. Fifth, help in sublimating pain and finding meaning and maturation through it. It is important to acknowledge that "Unification is Healing."
Hand Strength
;
Humans
;
Korea
;
Korean War
;
Mercuric Chloride
;
Obsessive Behavior
;
Professional Role
;
Psychiatry
;
Refugees
;
Sublimation
8.Effect of Zhusha Anshen pill, cinnabar, HgS, HgCl2 and MeHg on gene expression of renal transporters in mice.
Yi SUI ; Hong YANG ; Xing-zhong TIAN ; Jie LIU ; Jing-zhen SHI
China Journal of Chinese Materia Medica 2015;40(3):506-510
OBJECTIVETo study the effect of Zhusha Anshen pill, cinnabar, HgS, HgCl2 and MeHg on the gene expression of renal transporters in mice.
METHODHealthy male mice were given equivalent physiological saline, Zhusha Anshen pill (1.8 g · kg(-1), containing 0.17 g · kg(-1) of mercury), cinnabar (0.2 g · kg(-1), containing 1.7 g · kg(-1) of mercury), high dose cinnabar (2 g · kg(-1), containing 1.7 g · kg(-1) of mercury), HgS (0.2 g · kg(-1), containing 0.17 g · kg(-1) of mercury), HgCl2 (0.032 g · kg(-1), containing 0. 024 g · kg(-1) of mercury), MeHg (0.026 g · kg(-1), containing 0.024 g · kg(-1) of mercury), once daily, for 30 d, measuring body mass gain. 30 days later, the mice were sacrificed. The mercury accumulation in kidneys was detected with atomic fluorescence spectrometer. Expressions of Oat1, Oat2, Oat3, Mrp2, Mrp4, Urat1 were detected with RT-PCR.
RESULTCompared with the normal control group, a significant accumulation of Hg in kidney in HgCl2 and MeHg groups was observed (P <0.05), but these changes were not found in other groups. Compared with normal control group, mRNA expressions of Oat1 and Oat2 were evidently lower in HgCl2 and MeHg groups, but mRNA expressions of Mrp2 were apparently higher in HgCl2 group (P <0.05), mRNA expression of Mrp4 was significant higher in HgCl2 and MeHg groups, and mRNA expression of Urat1 was apparently lower in MeHg group.
CONCLUSIONHgCl2 and MeHg groups show significant difference from the normal group in mercury accumulation in kidneys and gene expression of kidney transporters, but with no difference between other groups and the normal group. Compared with HgCl2 and MeHg, cinnabar and its compounds could cause lower renal toxicity to mice.
Animals ; Carrier Proteins ; genetics ; Drugs, Chinese Herbal ; toxicity ; Gene Expression ; drug effects ; Kidney ; drug effects ; metabolism ; Male ; Mercuric Chloride ; toxicity ; Mercury Compounds ; toxicity ; Methylmercury Compounds ; toxicity ; Mice ; Multidrug Resistance-Associated Proteins ; genetics ; Organic Anion Transport Protein 1 ; genetics ; Organic Anion Transporters, Sodium-Independent ; genetics
9.Risk assessment for clinical external application of calomel.
China Journal of Chinese Materia Medica 2015;40(14):2706-2710
Calomel is a common traditional Chinese medicine (TCM) containing mercury in clinical external application. Although the toxicity of calomel has attracted concern, there is no unified standard yet in clinical external application. Risk assessment is used for evaluating the potential health effects of hazardous substances. The purpose of this article was to evaluate the health risk of calomel in clinical external application on the basis of toxicity data, to ensure safe and rational application of TCM containing calomel. The toxicity data of transdermal administration of calomel or mercurous chloride were collected by searching the literature. The daily maximum exposure dosage of calomel in clinical external application was estimated by following the four procedures of risk assessment, and Margin of Safety (MOS) as an evaluation indicator was then calculated to evaluate the safety of calomel on clinical application. It has been reported that the adult in single transdermal administration of calomel at 1. 5 g was lethal. Based on the LOAEL of calomel for long-term transdermal exposure (1 month) in rats was 0.096 g · kg(-1) · d(-1), the NOAEL of calomel for patients (about 60 kg) by external application within 2 weeks was estimated to be 1.46 mg · kg(-1) · d(-1). When MOS value equals to 1, the daily maximum exposure of calomel in clinical external application within 2 weeks was calculated to be 1.1 g. The results suggest that daily single dose of calomel in clinical external application should be lower than 1.5 g for adults, and more attention should be paid to changes in hepatic and renal function of patients when repeated dose more than 1.1 g within 2 weeks. The approach of risk assessment could be helpful in rational application of TCM containing mercury.
Animals
;
Humans
;
Medicine, Chinese Traditional
;
Mercury Compounds
;
toxicity
;
No-Observed-Adverse-Effect Level
;
Rats
;
Risk Assessment
10.Dissolution, absorption and bioaccumulation in gastrointestinal tract of mercury in HgS-containing traditional medicines Cinnabar and Zuotai.
Zhi-yuan ZHENG ; Cen LI ; Ming ZHANG ; Hong-xia YANG ; Lu-jing GENG ; Lin-shuai LI ; Yu-zhi DU ; Li-xin WEI
China Journal of Chinese Materia Medica 2015;40(12):2455-2460
α-HgS is the main component of traditional Chinese medicine cinnabar, while β-HgS is the main component of Tibetan medicine Zuotai. However, there was no comparative study on the dissolution and absorption in gastrointestinal tract and bioaccumulation in organs of mercury in Cinnabar, Zuotai, α-HgS and β-HgS. In this study, the dissolution process of the four compounds in the human gastrointestinal tract was simulated to determine the mercury dissolutions and compare the mercury dissolution of different medicines and the dissolution-promoting capacity of different solutions. To explore the absorption and bioaccumulation of cinnabar and Zuotai in organisms, mice were orally administered with clinical equivalent doses cinnabar and Zuotai. Meanwhile, a group of mice was given α-HgS and β-HgS with the equivalent mercury with cinnabar, while another group was given β-HgS and HgCl2 with the equivalent mercury with Zuotai. The mercury absorption and bioaccumulation capacities of different medicines in mice and their mercury bioaccumulation in different tissues and organs were compared. The experimental results showed a high mercury dissolutions of Zuotai in artificial gastrointestinal fluid, which was followed by β-HgS, cinnabar and α-HgS. As for the mercury absorption and bioaccumulation in mice, HgCl2 was the highest, β-HgS was the next, and a-HgS was slightly higher than cinnabar. The organs with the mercury bioaccumulation from high to low were kidney, liver and brain. This study is close to clinical practices and can provide reference for the clinical safe medication as well as a study model for the safety evaluation on heavy metal-containing medicines by observing the mercury dissolution, absorption, distribution and accumulation of mercury-containing medicines cinnabar and zuotai.
Animals
;
Brain
;
metabolism
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacokinetics
;
Gastrointestinal Tract
;
metabolism
;
Kidney
;
metabolism
;
Liver
;
metabolism
;
Male
;
Mercury
;
chemistry
;
pharmacokinetics
;
Mercury Compounds
;
chemistry
;
pharmacokinetics
;
Mice
;
Solubility

Result Analysis
Print
Save
E-mail