1.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
2.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
3.Mechanism of Neochlorogenic Acid in Ameliorating Psoriatic Keratinocyte Proliferation and Inflammation by Targeting HSP90 to Modulate NF-κB/NLRP3 Signaling Pathway
Mengyao JIANG ; Xinwei ZHANG ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):89-98
ObjectiveTo investigate the target proteins directly bound by neochlorogenic acid (NA) and the molecular mechanisms that ameliorate the proliferation and inflammatory response of psoriatic keratinocytes. MethodsM5-induced HaCaT cells were used as a psoriatic keratinocyte proliferation and inflammatory cell model. The synthesized NA probe (NA-P) and NA prodrug were first evaluated for cell viability using a cell proliferation/cell counting kit-8(CCK-8). The potency of NA and NA-P was evaluated in the safe concentration range, and the effects of 0-100 μmol·L-1 NA and probe on M5-induced proliferation of HaCaT cells were detected using CCK-8. The effects of 20, 40, 80 μmol·L-1 NA and 80 μmol·L-1 NA-P on the expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-23 (IL-23), and interleukin-17A (IL-17A) inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA), and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to measure the effects of NA on the mRNA expression of keratin 16 (K16) in HaCaT cells, S100 calcium-binding protein A9 (S100A9), S100 calcium-binding protein A7 (S100A7), IL-6, IL-17A, and chemokine 1 (CXCL1). In vitro fluorescence labeling and competition experiments using NA-P were performed, and target protein angling and analysis using pull-down experiments combined with liquid chromatography-mass spectrometry (Pull-down/LC-MS/MS) were conducted. Target validation was performed using pull-down experiments combined with protein immunoblotting (Pull down-WB), cellular heat transfer analysis combined with protein immunoblot (CETSA-WB) experiments, and molecular docking. Finally, Real-time PCR was utilized to detect the effects of 20, 40, 80 μmol·L-1 NA and 80 μmol·L-1 NA-P on the mRNA expression of IL-1β, nucleotide-binding oligomeric structural domain-like receptor protein 3 (NLRP3), apoptosis-associated speckled-like protein (ASC), and cysteine protease-1 (Caspase-1) in HaCaT cells. Protein immunoblot (Western blot) was used to detect the effects of phosphorylated p65 (p-p65), p65, phosphorylated human nuclear factor-κB inhibitory protein α (p-IκBα), human nuclear factor κB inhibitory protein α (IκBα), and heat shock protein 90 (HSP90) expression. ResultsIn the 200 μmol·L-1 safe concentration range, HaCaT cell proliferation, increased expression of TNF-α, IL-1β, IL-23, and IL-17A inflammatory factors, and increased mRNA expression of K16, S100A9, S100A7, IL-6, IL-17A, and CXCL1 were observed in the M5 group compared with the blank group. Cell proliferation in 5-100 μmol·L-1 NA and NA-P groups was inhibited, and the expression of TNF-α, IL-1β, IL-23, and IL-17A inflammatory factors was decreased in the NA-L, NA-M, NA-H, and NA-P-H groups. The mRNA expression of K16, S100A9, S100A7, IL-6, IL-17A, and CXCL1 was decreased (P<0.05). High-confidence targets were screened for HSP90 protein by Pull-down/LC-MS/MS using 200 μmol·L-1 NA competing with 100 μmol·L-1 NA-P. Compared with that in the blank group, the mRNA expression of NLRP3, IL-1β, ASC, and Caspase-1, as well as the expression of p-p65/p65, p-IκBα/IκBα, and HSP90 protein, were increased in HaCaT cells in the M5 group (P<0.05). Compared with that in the M5 group, the mRNA expression of NLRP3, IL-1β, ASC, and Caspase-1 of cells in the NA-L group, the NA-M group, the NA-H group, and the NA-P-H group was decreased (P<0.05). p-p65/p65 and p-IκBα/IκBα were decreased in the NA-M and NA-H groups (P<0.05), and there was no change in HSP90 protein. Pull down-WB showed that NA could directly target HSP90 protein, and NA binding to HSP90 protein enhanced its thermal stability. Molecular docking of NA with HSP90 family proteins HSP90AA1, HSP90B1, and HSP90AB1 all resulted in highly stable binding. ConclusionNA can inhibit the proliferation and inflammatory response of psoriatic keratinocytes by a mechanism that may be achieved by targeting HSP90 to modulate the NF-κB/NLRP3 signaling pathway.
4.Mechanism of Neochlorogenic Acid in Ameliorating Psoriatic Keratinocyte Proliferation and Inflammation by Targeting HSP90 to Modulate NF-κB/NLRP3 Signaling Pathway
Mengyao JIANG ; Xinwei ZHANG ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):89-98
ObjectiveTo investigate the target proteins directly bound by neochlorogenic acid (NA) and the molecular mechanisms that ameliorate the proliferation and inflammatory response of psoriatic keratinocytes. MethodsM5-induced HaCaT cells were used as a psoriatic keratinocyte proliferation and inflammatory cell model. The synthesized NA probe (NA-P) and NA prodrug were first evaluated for cell viability using a cell proliferation/cell counting kit-8(CCK-8). The potency of NA and NA-P was evaluated in the safe concentration range, and the effects of 0-100 μmol·L-1 NA and probe on M5-induced proliferation of HaCaT cells were detected using CCK-8. The effects of 20, 40, 80 μmol·L-1 NA and 80 μmol·L-1 NA-P on the expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-23 (IL-23), and interleukin-17A (IL-17A) inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA), and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to measure the effects of NA on the mRNA expression of keratin 16 (K16) in HaCaT cells, S100 calcium-binding protein A9 (S100A9), S100 calcium-binding protein A7 (S100A7), IL-6, IL-17A, and chemokine 1 (CXCL1). In vitro fluorescence labeling and competition experiments using NA-P were performed, and target protein angling and analysis using pull-down experiments combined with liquid chromatography-mass spectrometry (Pull-down/LC-MS/MS) were conducted. Target validation was performed using pull-down experiments combined with protein immunoblotting (Pull down-WB), cellular heat transfer analysis combined with protein immunoblot (CETSA-WB) experiments, and molecular docking. Finally, Real-time PCR was utilized to detect the effects of 20, 40, 80 μmol·L-1 NA and 80 μmol·L-1 NA-P on the mRNA expression of IL-1β, nucleotide-binding oligomeric structural domain-like receptor protein 3 (NLRP3), apoptosis-associated speckled-like protein (ASC), and cysteine protease-1 (Caspase-1) in HaCaT cells. Protein immunoblot (Western blot) was used to detect the effects of phosphorylated p65 (p-p65), p65, phosphorylated human nuclear factor-κB inhibitory protein α (p-IκBα), human nuclear factor κB inhibitory protein α (IκBα), and heat shock protein 90 (HSP90) expression. ResultsIn the 200 μmol·L-1 safe concentration range, HaCaT cell proliferation, increased expression of TNF-α, IL-1β, IL-23, and IL-17A inflammatory factors, and increased mRNA expression of K16, S100A9, S100A7, IL-6, IL-17A, and CXCL1 were observed in the M5 group compared with the blank group. Cell proliferation in 5-100 μmol·L-1 NA and NA-P groups was inhibited, and the expression of TNF-α, IL-1β, IL-23, and IL-17A inflammatory factors was decreased in the NA-L, NA-M, NA-H, and NA-P-H groups. The mRNA expression of K16, S100A9, S100A7, IL-6, IL-17A, and CXCL1 was decreased (P<0.05). High-confidence targets were screened for HSP90 protein by Pull-down/LC-MS/MS using 200 μmol·L-1 NA competing with 100 μmol·L-1 NA-P. Compared with that in the blank group, the mRNA expression of NLRP3, IL-1β, ASC, and Caspase-1, as well as the expression of p-p65/p65, p-IκBα/IκBα, and HSP90 protein, were increased in HaCaT cells in the M5 group (P<0.05). Compared with that in the M5 group, the mRNA expression of NLRP3, IL-1β, ASC, and Caspase-1 of cells in the NA-L group, the NA-M group, the NA-H group, and the NA-P-H group was decreased (P<0.05). p-p65/p65 and p-IκBα/IκBα were decreased in the NA-M and NA-H groups (P<0.05), and there was no change in HSP90 protein. Pull down-WB showed that NA could directly target HSP90 protein, and NA binding to HSP90 protein enhanced its thermal stability. Molecular docking of NA with HSP90 family proteins HSP90AA1, HSP90B1, and HSP90AB1 all resulted in highly stable binding. ConclusionNA can inhibit the proliferation and inflammatory response of psoriatic keratinocytes by a mechanism that may be achieved by targeting HSP90 to modulate the NF-κB/NLRP3 signaling pathway.
5.Mechanism of Tibetan Medicine Sanwei Doukoutang to Improve Cognitive Dysfunction in 5×FAD Mice Based on Wnt/β-catenin Signaling Pathway
Shuran LI ; Yaxin WANG ; Jing SUN ; Lei BAO ; Zihan GENG ; Dan XIE ; Ronghua ZHAO ; Yanyan BAO ; Qiyue SUN ; Jingsheng ZHANG ; Xinwei WANG ; Xinying LI ; Xihe CUI ; Xiaowei YANG ; LIUXIAN ; Mengyao CUI ; Qingshan LIU ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):54-60
ObjectiveTo explore the effects of the Tibetan medicine Sanwei Doukoutang (SWDK) on cognitive dysfunction in mice suffering from Alzheimer's disease (AD) and its related mechanism. MethodsFifty SPF 5 × FAD mice were randomly divided into model group, total ginsenoside group(0.04 g·kg-1), high-, medium-, and low-dose groups of SWDK (32.60, 16.30, 8.15 g·kg-1), with 10 mice in each group, and ten wild-type mice of the same age were used as the normal group, male and female in 1∶1. Gavage administration was performed once daily for 8 weeks. The Morris water maze test and contextual fear memory experiment were used to observe learning and memory function. Hematoxylin-eosin (HE) staining was utilized to observe the changes in the pathomorphology of brain tissue in mice. The levels of synaptophysin (SYP) and postsynaptic dense substance 95 (PSD95) in mice serum were detected by enzyme-linked immunosorbent assay (ELISA). The positive expression of brain-derived neurotrophic factor(BDNF) in the dentate gyrus (DG) region of mouse brain tissue was observed by immunohistochemistry (IHC). The protein levels of BDNF, Wnt family member 3A(Wnt3a), and β-catenin were detected in the hippocampus of mice by Western blot. ResultsCompared with the normal group of mice, the model group of mice had significantly more complex swimming routes and lower swimming speed (P<0.01), significantly lower percentage of time spent in the target quadrant (P<0.01), and a significantly lower percentage of freezing time (P<0.05). The number of neurons in the hippocampal region of mice was obviously reduced and unevenly arranged. The levels of SYP and PSD95(P<0.01) in the serum of mice were reduced, and the positive expression of BDNF in the DG region of the brain tissue of mice was reduced. The levels of hippocampal BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice were obviously reduced (P<0.05, P<0.01). Compared with the model group, the mice in the SWDK group and the total ginsenoside group had significantly shorter swimming routes, the high- and medium- dose SWDK groups significantly higher swimming speeds (P<0.01), significantly higher percentage of time spent in the target quadrant (P<0.01), obviously higher percentage of Freezing time (P<0.05), and obviously more neurons in the hippocampal region of the mice with tighter arrangement. The mice had elevated levels of serum SYP (P<0.05, P<0.01), PSD95 (P<0.01), increased BDNF-positive cells in the DG region of brain tissue, and obviously elevated levels of BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice (P<0.05, P<0.01). ConclusionSWDK can significantly improve the cognitive dysfunction of AD mice, and its mechanism may be related to regulating the Wnt/β-catenin signaling pathway, which promotes BDNF expression and thereby enhances synaptic plasticity, allowing neuronal signaling to be restored.
6.Mechanism of Tibetan Medicine Sanwei Doukoutang to Improve Cognitive Dysfunction in 5×FAD Mice Based on Wnt/β-catenin Signaling Pathway
Shuran LI ; Yaxin WANG ; Jing SUN ; Lei BAO ; Zihan GENG ; Dan XIE ; Ronghua ZHAO ; Yanyan BAO ; Qiyue SUN ; Jingsheng ZHANG ; Xinwei WANG ; Xinying LI ; Xihe CUI ; Xiaowei YANG ; LIUXIAN ; Mengyao CUI ; Qingshan LIU ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):54-60
ObjectiveTo explore the effects of the Tibetan medicine Sanwei Doukoutang (SWDK) on cognitive dysfunction in mice suffering from Alzheimer's disease (AD) and its related mechanism. MethodsFifty SPF 5 × FAD mice were randomly divided into model group, total ginsenoside group(0.04 g·kg-1), high-, medium-, and low-dose groups of SWDK (32.60, 16.30, 8.15 g·kg-1), with 10 mice in each group, and ten wild-type mice of the same age were used as the normal group, male and female in 1∶1. Gavage administration was performed once daily for 8 weeks. The Morris water maze test and contextual fear memory experiment were used to observe learning and memory function. Hematoxylin-eosin (HE) staining was utilized to observe the changes in the pathomorphology of brain tissue in mice. The levels of synaptophysin (SYP) and postsynaptic dense substance 95 (PSD95) in mice serum were detected by enzyme-linked immunosorbent assay (ELISA). The positive expression of brain-derived neurotrophic factor(BDNF) in the dentate gyrus (DG) region of mouse brain tissue was observed by immunohistochemistry (IHC). The protein levels of BDNF, Wnt family member 3A(Wnt3a), and β-catenin were detected in the hippocampus of mice by Western blot. ResultsCompared with the normal group of mice, the model group of mice had significantly more complex swimming routes and lower swimming speed (P<0.01), significantly lower percentage of time spent in the target quadrant (P<0.01), and a significantly lower percentage of freezing time (P<0.05). The number of neurons in the hippocampal region of mice was obviously reduced and unevenly arranged. The levels of SYP and PSD95(P<0.01) in the serum of mice were reduced, and the positive expression of BDNF in the DG region of the brain tissue of mice was reduced. The levels of hippocampal BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice were obviously reduced (P<0.05, P<0.01). Compared with the model group, the mice in the SWDK group and the total ginsenoside group had significantly shorter swimming routes, the high- and medium- dose SWDK groups significantly higher swimming speeds (P<0.01), significantly higher percentage of time spent in the target quadrant (P<0.01), obviously higher percentage of Freezing time (P<0.05), and obviously more neurons in the hippocampal region of the mice with tighter arrangement. The mice had elevated levels of serum SYP (P<0.05, P<0.01), PSD95 (P<0.01), increased BDNF-positive cells in the DG region of brain tissue, and obviously elevated levels of BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice (P<0.05, P<0.01). ConclusionSWDK can significantly improve the cognitive dysfunction of AD mice, and its mechanism may be related to regulating the Wnt/β-catenin signaling pathway, which promotes BDNF expression and thereby enhances synaptic plasticity, allowing neuronal signaling to be restored.
7.Burden and risk factors of stroke worldwide and in China: An analysis from the Global Burden of Disease Study 2021.
Zhengbao ZHU ; Mengyao SHI ; Quan YU ; Jiawen FEI ; Beiping SONG ; Xiaoli QIN ; Lulu SUN ; Yonghong ZHANG
Chinese Medical Journal 2025;138(20):2588-2595
BACKGROUND:
Stroke is the leading cause of death and long-term disability worldwide, including China. This study aimed to provide timely updates on stroke burden and stroke-related risk factors to help improve population-based prevention and control strategies.
METHODS:
Based on the Global Burden of Disease study 2021, incidence rate, prevalence rate, mortality rate, and disability-adjusted life-year (DALY) rate were used to estimate stroke burden trend from 1990 to 2021.
RESULTS:
In 2021, China had 4.1 million incident stroke cases, 26.3 million prevalent stroke cases, 2.6 million stroke related deaths, and 53.2 million stroke related DALYs, compared to 11.9 million incident stroke cases, 93.8 million prevalent stroke cases, 7.3 million stroke related deaths, and 160.5 million stroke-related DALYs worldwide. In 2021, the top six risk factors contributing to stroke burden were high blood pressure, air pollution, tobacco consumption, dietary risk factors, high low-density lipoprotein cholesterol, and high fasting plasma glucose, both in China and worldwide. From 1990 to 2021, China had significant increases of incidence rate, prevalence rate, mortality rate, and DALY rate for stroke, with estimates of 100.6 (95% uncertainty intervals [UI]: 87.2, 114.1)%, 102.9 (95% UI: 95.5, 110.9)%, 40.0 (95% UI: 14.9, 72.3)% and 15.7 (95% UI: -4.6, 41.2)%, respectively, while global incidence rate, prevalence rate, mortality rate and DALY rate for total stroke showed relatively moderate increases or even decreases, with estimates of 15.0 (95% UI: 12.1,18.0)%, 25.8 (95% UI: 23.7, 28.0)%, -2.6 (95% UI: -10.6, 5.5)%, and -10.7 (95% UI: -17.7, -3.6)%, respectively.
CONCLUSION
Stroke remains a huge disease burden worldwide and in China, and compared to the worldwide China has a significantly higher burden of stroke.
Humans
;
Stroke/etiology*
;
China/epidemiology*
;
Risk Factors
;
Global Burden of Disease
;
Disability-Adjusted Life Years
;
Prevalence
;
Incidence
;
Female
;
Quality-Adjusted Life Years
;
Male
8.Intercellular communication interference through energy metabolism-related exosome secretion inhibition for liver fibrosis treatment.
Mengyao ZHANG ; Huaqing JING ; Xinyi LIU ; Valentin A MILICHKO ; Yunsheng DOU ; Yingzi REN ; Zitong QIU ; Wen LI ; Weili LIU ; Xinxing WANG ; Nan LI
Acta Pharmaceutica Sinica B 2025;15(9):4900-4916
As activated hepatic stellate cells (aHSCs) play a central role in fibrogenesis, they have become key target cells for anti-fibrotic treatment. Nevertheless, the therapeutic efficiency is constrained by the exosomes they secrete, which are linked to energy metabolism and continuously stimulate the activation of neighboring quiescent hepatic stellate cells (qHSCs). Herein, an intercellular communication interference strategy is designed utilizing paeoniflorin (PF) loaded and hyaluronic acid (HA) coated copper-doped ZIF-8 (PF@HA-Cu/ZIF-8, PF@HCZ) to reduce energy-related exosome secretion from aHSCs, thus preserving neighboring qHSCs in a quiescent state. Simultaneously, the released copper and zinc ions disrupt key enzymes involved in glycolysis to reduce bioenergy synthesis in aHSCs, thereby promoting the reversion of aHSCs to a quiescent state and further decreasing exosome secretion. Therefore, PF@HCZ can effectively sustain both aHSCs and qHSCs in a metabolically dormant state to ultimately alleviate liver fibrosis. The study provides an enlightening strategy for interrupting exosome-mediated intercellular communication and remodeling the energy metabolic status of HSCs with boosted antifibrogenic activity.
9.Association of metabolic associated fatty liver disease with carotid atherosclerotic plaque and stenosis
Yingdie ZHU ; Zhijiao ZHANG ; Guilin ZHANG ; Yunkun GAO ; Mengyao ZHENG ; Hua HUANG ; Gongfang ZHAO
Journal of Clinical Hepatology 2024;40(8):1591-1597
Objective To investigate the association between metabolic associated fatty liver disease(MAFLD)and carotid atherosclerotic plaque.Methods A total of 1 107 patients who were hospitalized in The Second Affiliated Hospital of Kunming Medical University from July,2014 to December,2022 were enrolled,and all patients underwent abdominal ultrasound and CT angiography of the head and neck arteries.Baseline data and clinical diagnosis were collected,and the patients were divided into MAFLD group with 499 patients and non-MAFLD group with 608 patients based on medical history,clinical tests,and imaging findings.According to the CT value,carotid plaques were classified into calcified plaques,non-calcified plaques,and mixed plaques.According to the NASCET criteria,carotid stenosis was categorized as normal vessel,slight stenosis,mild stenosis,moderate stenosis,and severe stenosis/occlusion.The independent-samples t test was used for comparison of normally distributed continuous data between two groups,and the Mann-Whitney U rank sum test was used for comparison of non-normally distributed continuous data between two groups;the chi-square test was used for comparison of categorical data between two groups.Univariate and multivariate Logistic regression analyses were used to investigate the influencing factors for carotid atherosclerosis.Results Compared with the non-MAFLD group,the MAFLD group had a significantly higher proportion of patients with calcified plaques(74.3%vs 63.3%,P<0.05),non-calcified plaques(27.1%vs 17.1%,P<0.05),or mixed plaques(27.3%vs 20.7%,P<0.05),as well as a significantly higher proportion of patients with mild stenosis(50.9%vs 44.9%,P<0.05),moderate stenosis(14.6%vs 8.4%,P<0.05),or severe stenosis/occlusion(6.6%vs 3.5%,P<0.05).The univariate logistic regression analysis showed that MAFLD was a risk factor for calcified carotid plaques,non-calcified plaques,and mixed plaques,and it was also a risk factor for mild stenosis,moderate stenosis,and severe stenosis/occlusion of the carotid artery(all P<0.05).After adjustment for confounding factors,the multivariate Logistic regression analysis showed that MAFLD was an independent risk factor for calcified plaque,non-calcified plaque,mixed plaque,and moderate stenosis of the carotid arteries(all P<0.05).Conclusion MAFLD is an independent risk factor for moderate stenosis,calcified plaques,non-calcified plaques,and mixed plaques of the carotid arteries.
10.Cost-effectiveness of pharmaceutical smoking cessation intervention in China primary cancer prevention
Peiyuan SUN ; Yuting XIE ; Ranran QIE ; Huang HUANG ; Zhuolun HU ; Mengyao WU ; Qi YAN ; Cairong ZHU ; Jufang SHI ; Kaiyong ZOU ; Yawei ZHANG
Chinese Journal of Oncology 2024;46(1):66-75
Objectives:To evaluate the cost-effectiveness of typical pharmaceutical smoking cessation intervention strategies in China in the context of primary cancer prevention.Methods:Markov cohort simulation models were established to simulate the burden of 12 smoking caused cancer, including lung cancer, oral cancer, nasopharyngeal cancer, laryngeal cancer, esophageal cancer, gastric cancer, pancreatic cancer, liver cancer, kidney cancer, bladder cancer, cervical cancer, and acute myeloid leukemia. Taking incremental cost effectiveness ratio (ICER) as the main indicator, the model sets one year as the cycling period for 50 periods and simulates the cohort of 10 000 thirty-five-year-old current smokers with various smoking cessation strategies. To ensure the robustness of conclusion, univariate sensitivity analysis, probability sensitivity analysis, and age-group sensitivity analysis were conducted.Results:The results showed that varenicline intervention was the most cost-effective intervention. Compared to the next most effective option, incremental cost of each additional quality-adjusted life year is 11 140.28 yuan, which is below the threshold of willingness to pay (1 year GDP per capita). The value of ICER increased as the increasing age group of adopting intervention, but neither exceeded the threshold of willingness to pay. One-way sensitivity analysis showed that the value of discount rate, the hazard ratio and cost of intervention strategy had a greater impact on the result of ICER.Conclusion:In China, the use of varenicline to quit smoking is highly cost effective in the context of cancer primary prevention, especially for younger smokers.

Result Analysis
Print
Save
E-mail