1.Risk factors and prognosis of first extubation failure in neonates undergoing invasive mechanical ventilation.
Mengyao WU ; Hui RONG ; Rui CHENG ; Yang YANG ; Keyu LU ; Fei SHEN
Journal of Central South University(Medical Sciences) 2025;50(8):1398-1407
OBJECTIVES:
Prolonged invasive mechanical ventilation is associated with increased risks of severe complications such as retinopathy of prematurity and bronchopulmonary dysplasia. Although neonatal intensive care unit (NICU) follow the principle of early extubation, extubation failure rates remain high, and reintubation may further increase the risk of adverse outcomes. This study aims to identify risk factors and short-term prognosis associated with first extubation failure in neonates, to provide evidence for effective clinical intervention strategies.
METHODS:
Clinical data of neonates who received invasive ventilation in the NICU of Children's Hospital of Nanjing Medical University from January 1, 2019, to December 31, 2021, were retrospectively collected. Neonates were divided into a successful extubation group and a failed extubation group based on whether reintubation occurred within 72 hours after the first extubation. Risk factors and short-term outcomes related to extubation failure were analyzed.
RESULTS:
A total of 337 infants were included, with 218 males (64.69%). Initial extubation failed in 34 (10.09%) infants. Compared with the successful extubation group, the failed extubation group had significantly lower gestational age [(31.37±5.14) weeks vs (34.44±4.07) weeks], age [2.5 (1.00, 8.25) h vs 5 (1.00, 22.00) h], birth weight [(1 818.97±1128.80) g vs (2 432.18±928.94) g], 1-minute Apgar score (6.91±1.90 vs 7.68±2.03), and the proportion of using mask oxygenation after extubation (21% vs 46%) (all P<0.05). Conversely, compared with the successful extubation group, the failed extubation group had significantly higher rates of vaginal delivery (59% vs 32%), caffeine use during mechanical ventilation (71% vs 38%), dexamethasone use at extubation (44% vs 17%), the highest positive end-expiratory pressure level within 72 hours post-extubation [6(5.00, 6.00) cmH2O vs 5 (0.00, 6.00) cmH2O] (1 cmH2O=0.098 kPa), the highest FiO2 within 72 hours post-extubation [(34.35±5.95)% vs (30.22±3.58)%], and duration of noninvasive intermittent positive pressure ventilation after extubation [0.5 (0.00, 42.00) hours vs 0 (0, 0) hours] (all P<0.05). Multivariate analysis identified gestational age <28 weeks (OR=5.570, 95% CI 1.866 to 16.430), age at NICU admission (OR=0.959, 95% CI 0.918 to 0.989), and a maximum FiO2≥35% within 72 hours post-extubation (OR=4.541, 95% CI 1.849 to 10.980) as independent risk factors for extubation failure (all P<0.05). Additionally, the failed extubation group exhibited significantly higher incidences of necrotizing enterocolitis grade II or above, moderate-to-severe bronchopulmonary dysplasia, severe bronchopulmonary dysplasia, retinopathy of prematurity, treatment abandonment due to poor prognosis, and discharge on home oxygen therapy (all P<0.05). Total hospital length of stay and total hospitalization costs were also significantly increased in the failed extubation group (all P<0.05).
CONCLUSIONS
Gestational age <28 weeks, younger age at NICU admission, and FiO2≥35% after extubation are high-risk factors for first extubation failure in neonates. Extubation failure markedly increases the risk of adverse clinical outcomes.
Humans
;
Infant, Newborn
;
Male
;
Female
;
Airway Extubation/adverse effects*
;
Risk Factors
;
Retrospective Studies
;
Respiration, Artificial/methods*
;
Intensive Care Units, Neonatal
;
Prognosis
;
Gestational Age
;
Bronchopulmonary Dysplasia
;
Infant, Premature
;
Treatment Failure
;
Intubation, Intratracheal
2.S1PR1 serves as a viable drug target against pulmonary fibrosis by increasing the integrity of the endothelial barrier of the lung.
Mengyao HAO ; Rong FU ; Jun TAI ; Zhenhuan TIAN ; Xia YUAN ; Yang CHEN ; Mingjin WANG ; Huimin JIANG ; Ming JI ; Fangfang LAI ; Nina XUE ; Liping BAI ; Yizhun ZHU ; Xiaoxi LV ; Xiaoguang CHEN ; Jing JIN
Acta Pharmaceutica Sinica B 2023;13(3):1110-1127
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with unclear etiology and limited treatment options. The median survival time for IPF patients is approximately 2-3 years and there is no effective intervention to treat IPF other than lung transplantation. As important components of lung tissue, endothelial cells (ECs) are associated with pulmonary diseases. However, the role of endothelial dysfunction in pulmonary fibrosis (PF) is incompletely understood. Sphingosine-1-phosphate receptor 1 (S1PR1) is a G protein-coupled receptor highly expressed in lung ECs. Its expression is markedly reduced in patients with IPF. Herein, we generated an endothelial-conditional S1pr1 knockout mouse model which exhibited inflammation and fibrosis with or without bleomycin (BLM) challenge. Selective activation of S1PR1 with an S1PR1 agonist, IMMH002, exerted a potent therapeutic effect in mice with bleomycin-induced fibrosis by protecting the integrity of the endothelial barrier. These results suggest that S1PR1 might be a promising drug target for IPF therapy.
3. The fabrication and related properties study of chitosan-poly (lactide-co-glycolide) double-walled microspheres loaded with nerve growth factor
Chinese Journal of Reparative and Reconstructive Surgery 2020;34(1):102-108
Objective: To evaluate the feasibility of the chitosan-poly (lactide-co-glycolide) (PLGA) double-walled microspheres for sustained release of bioactive nerve growth factor (NGF) in vitro. Methods: NGF loaded chitosan-PLGA double-walled microspheres were prepared by emulsion-ionic method with sodium tripolyphosphate (TPP) as an ionic cross-linker. The double-walled microspheres were cross-linked by different concentrations of TPP [1%, 3%, 10% ( W/ V)]. NGF loaded PLGA microspheres were also prepared. The outer and inner structures of double-walled microspheres were observed by light microscopy, scanning electron microscopy, confocal laser scanning microscopy, respectively. The size and distribution of microspheres and fourier transform infra red spectroscopy (FT-IR) were analyzed. PLGA microspheres with NGF or chitosan-PLGA double-walled microspheres cross-linked by 1%, 3%, and 10%TPP concentration (set as groups A, B, C, and D respectively) were used to determine the degradation ratio of microspheres in vitro and the sustained release ratio of NGF in microspheres at different time points. The bioactivity of NGF (expressed as the percentage of PC12 cells with positive axonal elongation reaction) in the sustained release solution of chitosan-PLGA double-walled microspheres without NGF (set as group A1) was compared in groups B, C, and D. Results: The chitosan-PLGA double-walled microspheres showed relative rough and spherical surfaces without aggregation. Confocal laser scanning microscopy showed PLGA microspheres were evenly uniformly distributed in the chitosan-PLGA double-walled microspheres. The particle size of microspheres ranged from 18.5 to 42.7 μm. The results of FT-IR analysis showed ionic interaction between amino groups and phosphoric groups of chitosan in double-walled microspheres and TPP. In vitro degradation ratio analysis showed that the degradation ratio of double-walled microspheres in groups B, C, and D appeared faster in contrast to that in group A. In addition, the degradation ratio of double-walled microsphere in groups B, C, and D decreased when the TPP concentration increased. There were significant differences in the degradation ratio of each group ( P<0.05). In vitro sustained release ratio of NGF showed that when compared with PLGA microspheres in group A, double-walled microspheres in groups B, C, and D released NGF at a relatively slow rate, and the sustained release ratio decreased with the increase of TPP concentration. Except for 84 days, there was significant difference in the sustained release ratio of NGF between groups B, C, and D ( P<0.05). The bioactivity of NGF results showed that the percentage of PC12 cells with positive axonal elongation reaction in groups B, C, and D was significantly higher than that in group A1 ( P<0.05). At 7 and 28 days of culture, there was no significant difference between groups B, C, and D ( P>0.05); at 56 and 84 days of culture, the percentage of PC12 cells with positive axonal elongation reaction in groups C and D was significantly higher than that in group B ( P<0.05), and there was no significant difference between groups C and D ( P>0.05). Conclusion: NGF loaded chitosan-PLGA double-walled microspheres have a potential clinical application in peripheral nerve regeneration after injury.
4.Immunological synapse formation inhibits the apoptosis of macrophages in rheumatoid arthritis
Ruixue DUO ; Ping ZHU ; Conghua WANG ; Mengyao RONG ; Lina CHEN ; Li WANG ; Chunmei FAN
Chinese Journal of Rheumatology 2011;15(1):3-6,后插1
Objective To determine whether macrophages can behave as antigen presenting cells participating the formation of immunological synapse in rheumatoid arthritis (RA) and whether this process can affect the apoptosis. Moreover, this study was aimed to observe the function of cyclophilin A (CypA) in immunological synapse formation and its role in regulating the apoptosis of macrophages. Methods human acute monocytic leukemia cell line (THP-1) induced macrophages were coated with staphylococcal enterotoxin B(SEB) (100 ng/ml) and co-cultured with activated Jurkat T cells (human acute T-cell leukemia cell line), then incubated in the RPMI-1640 for 16 hours to induce apoptosis. The apoptosis of the macrophages were analyzed by flow cytometry by Annexin V-PI staining. The macrophages cultured in the RPMI-1640 alone were used as control. Meanwhile, CypA (200 ng/ml) were added to or not added in order to observe the apoptosis of macrophages. The function of CypA and the apoptosis of macrophages isolated from RA peripheral blood were also investigated through co-culture with CD4+T cells isolated by immunomagnetic beads. Comparisons between groups were performed by two-sample t-tests. Results In the peripheral blood of healthy people and RA patients, the apoptosis of macrophages which participated immunological synapse was (32.9±2.8)%, (24.7±1.6)%, (14.5±1.2)% respectively, which was significantly lower than the apoptosis of macrophages cultured alone [ respectively for (61.4±2.4)%, (45.5±2.6)%, (22.9±1.5)%, (P<0.05) ]. After CypA was added, the apoptosis of macrophages in cell lines, healthy people and RA patients decreased to (27.2±2.1)%, (20.1±1.1)%, (12.9±1.0)%, lower than the apoptosis of macrophages which participated immunological synapse formation (P<0.05). Conclusion In RA, the macrophages participate in the formation of immunological synapse by interacting with CD4+ T cells. They can significantly reduce the apoptosis on themselves. CypA can enhance this effect. These results provide a new theoretical foundation for prolonged survival of macrophages in RA, which can secrete a variety of cytokines to enhance inflammation and joint destruction.

Result Analysis
Print
Save
E-mail