1.Research progress in diagnosis and treatment of salivary gland tumors.
Guangyan YU ; Xin PENG ; Min GAO ; Peng YE ; Na GE ; Mengqi JIA ; Bingyu LI ; Zunan TANG ; Leihao HU ; Wenbo ZHANG
Journal of Peking University(Health Sciences) 2025;57(1):1-6
Salivary gland tumor is one of the most common tumors in oral and maxillofacial regions. The diagnosis and treatment of salivary gland tumors had been a clinical characteristic project in Peking University School and Hospital of Stomatology since long time ago. Here we introduced the research progress in diagnosis and treatment of salivary gland tumors during the past 10 years. Among 7 190 cases of salivary gland tumors treated in this institution, 4 654 cases (64.7%) were benign, and 2 536 (35.3%) were malignant, with benign ∶ malignant ratio of 1.84 ∶ 1. Parotid was the most common location, followed by minor salivary gland and submandibular gland, while sublingular gland tumor was seldom seen. The proportion of minor salivary gland tumor was relatively high. Among 1 874 cases with primary malignant tumors, the cases with T3 and stage Ⅲ accounted for only 9.6% and 10.3%, respectively, which indicated that there was shortcoming in the T classification and clinical stage formulated by Union for International Cancer Control (UICC), and further revision was required. The 5, 10, and 15 year survival rates of 1 637 cases with postoperative follow-up were 93.1%, 87.2% and 79.3%, respectively, which were much higher than those we reported 30 years ago. The improvement of treatment results was related to more widely used combined treatment with surgery and postoperative radiotherapy, and the increase in patients with early stage. Adenoid cystic carcinoma was the malignant tumor with high rate of distant metastasis. The 5 and 10 year survival rates of the patients with pulmonary metastasis were 76.2% and 51.8%, respectively, which indicated that the pulmonary metastatic carcinomas developed slowly. Recurrent rate of carcinoma ex pleomorphic adenoma was 46.7% after single treatment of sur-gery, while it decreased to 27.5% after combined theraphy with surgery and radiotherapy, indicating that postoperative radiotheraphy could reduce the recurrent rate effectively. The normal myoepithelial cells had the inhibiting role in the invasion and metastasis of carcinoma ex pleomorphic adenoma. The evaluation of integrity of myoepithelial cells surrounding the tumor mass is helpful to understand the invasiveness of the tumors. The new surgical modalities such as extracapsular resection and partial sialoadenectomy were used in treatment of benign tumors of parotid gland and submandibular gland with advantages of decreased tissue damage and preservation of glandular function. Application of digital surgical techniques such as mixed reality combined with surgical navigation and real-time three-dimensional holograms in the surgical treatment of parotid gland tumors showed the benifits of more safety and precision, and less tissue da-mage.
Humans
;
Salivary Gland Neoplasms/pathology*
;
Carcinoma, Adenoid Cystic/therapy*
;
Adenoma, Pleomorphic/therapy*
;
Neoplasm Staging
2.Research Progress in Anti-tumor Mechanisms of Prunellae Spica and Its Active Components
Mengqi LI ; Yu SHI ; Shiyu YANG ; Jieyu LI ; Yu HU ; Wenxiu SUN ; Lingjun LI
Chinese Journal of Modern Applied Pharmacy 2024;41(5):716-726
As a common clinical Chinese medicine, Prunellae Spica has the effects of clearing liver-fire, improving eyesight, resolving massesand detumescence, and has strong anti-tumor effects against thyroid cancer, breast cancer, liver cancer and other cancers. Extracts of Prunellae Spica and its active components can play an anti-tumor role in a variety of ways, including cell apoptosis, inhibiting cell invasion and metastasis, inhibiting cell proliferation, inducing autophagy, anti tumor angiogenesis, reversing tumor multidrug resistance and regulating immune function, by regulating miRNA and Wnt/β-catenin, PI3/AKT, AMPK/mTOR/ULK1, RANKL/RANK/OPG and other signal pathways . In this paper, the anti-tumor mechanism of Prunellae Spica extract was reviewed, in order to provide reference for further research and application.
3.Advances on Chemical Constituents of Volatile Oil from Angelicae Sinensis Radix and Their Pharmacological Effect
Yu SHI ; Mengqi LI ; Shiyu YANG ; Yu HU ; Wenxiu SUN ; Lingjun LI
Chinese Journal of Modern Applied Pharmacy 2024;41(7):1006-1014
Angelicae Sinensis Radix, drived from a medicinal and edible plant Angelica sinensis, with the reputation of "nine Angelica recipes out of ten". The volatile oils from Angelicae Sinensis Radix was the main medicinal component of Angelicae Sinensis Radix, mainly including benzene phthalides, terpenoids and alkanes, its chemical composition was complex. Such factors as growth environment, concoction process, extraction methods and other factors all can trigger changes in volatile oil constituents and content from Angelicae Sinensis Radix. Angelicae Sinensis Radix essential oil has diverse pharmacological activities such as anti-hypotension, protection of ischemia-reperfusion injury, asthma, anti-inflammatory and anti-cancer, etc., implying its high clinical application value. This paper reviewed the literature on the volatile oil of Angelicae Sinensis Radix in the past ten years, the chemical components of Angelicae Sinensis Radix were sorted out and the factors affecting the chemical components were summarized, focusing on its anti-hypotensive, ischemia-reperfusion injury protection, asthma and other active effects, in order to provide reference for the further development and utilization of the volatile oil of Angelicae Sinensis Radix.
4.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
5.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
6.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
7.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
8.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
9.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
10.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.


Result Analysis
Print
Save
E-mail