1.Tianma Gouteng Granule improves motor deficits in mouse models of Parkinson's disease by regulating the necroptosis pathway.
Dandan CHEN ; Qianqian REN ; Menglin LÜ ; Baowen ZHANG ; Xingran LIU ; Meng ZHANG ; Yang WANG ; Xianjuan KOU
Journal of Southern Medical University 2025;45(8):1571-1580
OBJECTIVES:
To investigate the effects of formulated granules of Tianma Gouteng Yin (TGY) on motor deficits in a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subacute Parkinson's disease (PD) and explore the possible molecular mechanisms.
METHODS:
Ninety C57BL/6 mice were randomized equally into 6 groups, including a control group, a PD model group, a NEC-1 (6.5 mg/kg) treatment group, two TGY treatment groups at 5 and 2.5 g/kg, and a Madopar (76 mg/kg) treatment (positive control) group. Mouse models of PD were established by intraperitoneal injection of MPTP (30 mg/kg) for 5 consecutive days with the corresponding treatments for 15 days. The mice were randomly selected for motor function tests. Western blotting was used to detect the changes in expressions of TH, α-syn, RIPK1, RIPK3 and MLKL in the striatum of the mice. Network pharmacology analysis and molecular docking studies were performed to explore TGY-mediated regulation of the necroptosis pathway for PD treatment.
RESULTS:
Compared with those in the control group, the PD model mice exhibited obvious motor deficits with significantly increased α-syn protein expression and lowered TH protein expression in the striatum. Treatment with NEC-1 obviously improved motor deficits, inhibited the necroptosis pathway, and alleviated the changes in TH and α‑syn proteins in PD mice. Network pharmacology and molecular docking analyses suggested that the therapeutic effect of TGY in PD was associated with the modulation of RIPK1, a key protein in the necroptosis pathway. In PD mouse models, TGY treatment at the two doses significantly improved motor deficits of the mice, increased TH expression, and decreased the expressions of α-syn and necroptosis-related proteins in the striatum.
CONCLUSIONS
TGY can effectively inhibit the necroptosis pathway, increase TH expression and decrease α-syn expression in the striatum to improve motor deficits in PD mice.
Animals
;
Mice, Inbred C57BL
;
Mice
;
Necroptosis/drug effects*
;
Drugs, Chinese Herbal/therapeutic use*
;
Parkinson Disease/drug therapy*
;
Disease Models, Animal
;
Male

Result Analysis
Print
Save
E-mail