1.Joint Relation Extraction of Famous Medical Cases with CasRel Model Combining Entity Mapping and Data Augmentation
Yuxin LI ; Xinghua XIANG ; Hang YANG ; Dasheng LIU ; Jiaheng WANG ; Zhiwei ZHAO ; Jiaxu HAN ; Mengjie WU ; Qianzi CHE ; Wei YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):218-225
ObjectiveTo address the challenges of unstructured classical Chinese expressions, nested entity relationships, and limited annotated data in famous traditional Chinese medicine(TCM) case records, this study proposes a joint relation extraction framework that integrates data augmentation and entity mapping, aiming to support the construction of TCM diagnostic knowledge graphs and clinical pattern mining. MethodsWe developed an annotation structure for entities and their relationships in TCM case texts and applied a data augmentation strategy by incorporating multiple ancient texts to expand the relation extraction dataset. A cascade binary tagging framework for relation triple extraction(CasRel) model for TCM semantics was designed, integrating a pre-trained bidirectional encoder representations from transformers(BERT) layer for classical TCM texts to enhance semantic representation, and using a head entity-relation-tail entity mapping mechanism to address entity nesting and relation overlapping issues. ResultsExperimental results showed that the CasRel model, combining data augmentation and entity mapping, outperformed the pipeline-based Bert-Radical-Lexicon(BRL)-bidirectional long short-term memory(BiLSTM)-Attention model. The overall precision, recall, and F1-score across 12 relation types reached 65.73%, 64.03%, and 64.87%, which represent improvements of 14.26%, 7.98%, and 11.21% compared to the BRL-BiLSTM-Attention model, respectively. Notably, the F1-score for tongue syndrome relations increased by 22.68%(69.32%), and the prescription-syndrome relations performed the best with the F1-score of 70.10%. ConclusionThe proposed framework significantly improves the semantic representation and complex dependencies in TCM texts, offering a reusable technical framework for structured mining of TCM case records. The constructed knowledge graph can support clinical syndrome differentiation, prescription optimization, and drug compatibility, providing a methodological reference for TCM artificial intelligence research.
2.Modified Xiehuangsan Regulates Microglial Polarization and TLR4/MyD88/NF-κB Pathway to Treat Tic Disorders in Rats
Mengjie ZHAO ; Qiong ZHAO ; Cuiling YANG ; Hongyun ZHOU ; Xiangjuan SUN ; Xinyi GUO ; Sajiyue HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):10-18
ObjectiveTo explore the mechanism of modified Xiehuangsan in treating tic disorders (TD) based on microglial polarization and the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor (NF)-κB pathway. MethodsSeventy-two Sprague-Dawley (SD) rats were randomly assigned into six groups: control, model, tiapride (0.025 g·kg-1), and low-, medium-, and high-dose (12, 24, 48 g·kg-1, respectively) modified Xiehuangsan, with 12 rats in each group. Except the control group, the other groups received intraperitoneal injection of 3,3'-iminodipropionitrile (IDPN) for 7 consecutive days for the modeling of TD. After successful modeling, the control and model groups were given normal saline via gavage, and the other groups were administrated with corresponding drugs by gavage. After 28 days of continuous intervention, rat behaviors were observed, and the modified Xiehuangsan group showing the best anti-TD effect was selected for deciphering the treatment mechanism. Hematoxylin and eosin staining was conducted to observe morphological changes in the rat striatum. Immunohistochemistry was employed to detect the expression of CD16 and CD206 in the striatum. Real-time PCR was employed to measure the mRNA levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-4, TLR4, MyD88, and NF-κB p65 in the striatum. Western blot was employed to determine the protein levels of ionized calcium-binding adapter molecule 1 (Iba1), Fc receptor family for immunoglobulin (Ig)G type Ⅲ (CD16), mannose receptor (CD206), TLR4, MyD88, and NF-κB p65 in the striatum. ResultsCompared with the control group, the model group showed increased stereotyped behaviors, locomotor activity, total movement distance, and movement speed, shortened resting time (P<0.01), and noticeable pathological changes in the striatum. Compared with the model group, the tiapride group and modified Xiehuangsan groups exhibited reduced stereotyped behavior, locomotor activity, total movement distance, and movement speed, prolonged resting time (P<0.05, P<0.01), and alleviated pathological changes in the striatum. Among the modified Xiehuangsan groups, the high-dose group had the best intervention effect and the mildest pathological changes. Therefore, the high-dose group was selected for further research. Compared with the control group, the modeling of TD increased Iba1 and CD16 expression (P<0.05, P<0.01), up-regulated the mRNA levels of IL-1β and TNF-α (P<0.05, P<0.01), down-regulated the mRNA level of IL-4 (P<0.05), up-regulated the mRNA and protein levels of TLR4 and MyD88 (P<0.05, P<0.01), and up-regulated the protein level of NF-κB p65 (P<0.01). Compared with the model group, modified Xiehuangsan reduced Iba1 and CD16 expression (P<0.05, P<0.01), up-regulated the protein level of CD206 (P<0.05, P<0.01), down-regulated the mRNA levels of IL-1β and TNF-α (P<0.05), up-regulated the mRNA level of IL-4 (P<0.01), and down-regulated the mRNA and protein levels of TLR4, MyD88, and NF-κB p65 (P<0.05, P<0.01). ConclusionModified Xiehuangsan demonstrated a definite therapeutic effect on TD in rats. It may reduce neuroinflammation in TD rats by regulating the polarization of microglia in the striatum via the TLR4/MyD88/NF-κB signaling pathway.
3.Key Information Research and Modern Clinical Application of Famous Classical Formula Yanghetang
Weilu NIU ; Mengjie YANG ; Chengqi LYU ; Shunxi WANG ; Ziwen WANG ; Huangchao JIA ; Liyun WANG ; Xuewei LIU ; Mingsan MIAO ; Xiaomeng WANG ; Yawei YAN ; Chunyong LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):238-246
Through data collection and collation combined with bibliometrics, this study conducted a series of textual research on Yanghetang, such as the name and origin, the evolution of prescription composition and modern clinical application. Yanghetang was first recorded in Bencao Yidu of WANG Ang in the Qing dynasty. In addition to Yanghetang, there were 3 bynames of Jiawei Yanghetang, Quanshengji Yanghetang and Zhenjun Yanghetang. Regarding the composition of the formula, a total of 4 versions of Yanghetang were collected. The first version is the 5 medicines version of Cervi Cornus Colla, Rehmanniae Radix Praeparata, Cinnamomi Cortex, Zingiberis Rhizoma and Ephedrae Herba in Bencao Yidu. The second version is the 7 medicines version of Waike Zhengzhi Quanshengji, changing Zingiberis Rhizoma to Zingiberis Rhizoma Praeparatum Carbonisata(ZRPC) and adding Sinapis Semen and Glycyrrhizae Radix et Rhizoma(GRR) on the basis of Bencao Yidu, and most of the Yanghetang is of this version. The third version is the 6 medicines version of Wushi Yifang Huibian, that is, on the basis of Bencao Yidu, Zingiberis Rhizoma is changed into ZRPC, and Sinapis Semen is added. The fourth version is the 6 medicines version in Yifang Jiedu, that is, on the basis of Bencao Yidu, Zingiberis Rhizoma is changed into Zingiberis Rhizoma Praeparatum, and GRR Praeparata cum Melle is added. Regarding the dose of Yanghetang, the doses of the medicines in Waike Zhengzhi Quanshengji was converted into the modern doses as follows:37.3 g of Rehmanniae Radix Praeparata, 1.87 g of Ephedrae Herba, 11.19 g of Cervi Cornus Colla, 7.46 g of Sinapis Semen, 3.73 g of Cinnamomi Cortex, 3.73 g of GRR, and 1.87 g of ZRPC. The origins of the above medicines are consistent with the 2020 edition of Chinese Pharmacopoeia. The processing specification of Rehmanniae Radix Praeparata is steaming method, ZRPC is ginger charcoal, Sinapis Semen is the fried products, and the rest of the medicines are raw products. The decoction method was verified by the decoction method in Chonglou Yuyao, which is similar in the time, and it is recommended that the above medicines should be added with 600 mL of water, decocted to 100 mL, and taken warmly 30 min after meal. For each dose, it is recommended to use 1-3 doses per day according to the doctor's advice in combination with clinical practice. The diseases involved in the ancient applications involved 42 diseases in 11 departments, including orthopedics, dermatology and gynecology, which were dominated by Yin-cold syndrome. However, the diseases involved in modern research also include 148 related diseases in 10 departments, such as orthopedics, obstetrics and gynecology, which is consistent with the ancient books. In recent years, the research hotspots of Yanghetang have focused on more than 10 fields, including osteoblasts, malignant tumors, wound healing, traditional Chinese medicine fumigation and so on, which are widely used. It is suitable for comprehensive research and development because of its rational formula composition, clear origin, processing and decoction method, and wide clinical application.
4.Historical Evolution and Modern Clinical Application of Huoxiang Zhengqisan
Weilu NIU ; Mengjie YANG ; Chengqi LYU ; Cuicui SHEN ; Congcong LI ; Huangchao JIA ; Liyun WANG ; Xuewei LIU ; Mingsan MIAO ; Xiaomeng WANG ; Yawei YAN ; Chunyong LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):156-167
In this study, bibliometric methods were used to systematically investigate the name and origin, the evolution of prescription composition, dose evolution, origin and processing method, decoction method, ancient application, modified application, modern application and other information of Huoxiang Zhengqisan. After research, Huoxiang Zhengqisan, also known as Huoxiang Zhengqitang, was first recorded in Taiping Huimin Hejijufang. The original formula is composed of 41.3 g of Arecae Pericarpium, 41.3 g of Angelicae Dahuricae Radix, 41.3 g of Perilla frutescens(actually Perillae Folium), 41.3 g of Poria, 82.6 g of Pinelliae Rhizoma, 82.6 g of Atractylodis Macrocephalae Rhizoma, 82.6 g of Citri Reticulatae Pericarpium(actually Citri Exocarpium Rubbum), 82.6 g of Magnoliae Officinalis Cortex, 82.6 g of Platycodonis Radix, 123.9 g of Pogostemonis Herba, and 103.25 g of Glycyrrhizae Radix et Rhizoma. In this formula, Magnoliae Officinalis Cortex is processed according to the specifications for ginger-processed products, Glycyrrhizae Radix et Rhizoma is processed according to the specifications for stir-fried products, and other herbs are used in their raw products. The botanical sources of the herbs are consistent with the 2020 edition of Pharmacopoeia of the People's Republic of China. The above herbs are ground into a fine powder with a particle size passing through a No. 5 sieve. For each dose, take 8.26 g of the powdered formula, add 300 mL of water, along with 3 g of Zingiberis Rhizoma Recens and 3 g of Jujubae Fructus, and decoct until reduced to 140 mL. The decoction should be administered hot, with three times daily. To induce sweating, the patient should be kept warm under a quilt, and an additional dose should be prepared and taken if needed. This formula is traditionally used to relieve the exterior and resolve dampness, regulate Qi and harmonize the middle, which is mainly used to treat a series of diseases of digestive and respiratory systems. However, potential adverse reactions, including allergies, purpura and disulfiram-like reactions, should be considered during clinical use. Huoxiang Zhengqisan features a rational composition, extensive clinical application, and strong potential for further research and development.
5.Historical Evolution and Modern Clinical Application of Huoxiang Zhengqisan
Weilu NIU ; Mengjie YANG ; Chengqi LYU ; Cuicui SHEN ; Congcong LI ; Huangchao JIA ; Liyun WANG ; Xuewei LIU ; Mingsan MIAO ; Xiaomeng WANG ; Yawei YAN ; Chunyong LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):156-167
In this study, bibliometric methods were used to systematically investigate the name and origin, the evolution of prescription composition, dose evolution, origin and processing method, decoction method, ancient application, modified application, modern application and other information of Huoxiang Zhengqisan. After research, Huoxiang Zhengqisan, also known as Huoxiang Zhengqitang, was first recorded in Taiping Huimin Hejijufang. The original formula is composed of 41.3 g of Arecae Pericarpium, 41.3 g of Angelicae Dahuricae Radix, 41.3 g of Perilla frutescens(actually Perillae Folium), 41.3 g of Poria, 82.6 g of Pinelliae Rhizoma, 82.6 g of Atractylodis Macrocephalae Rhizoma, 82.6 g of Citri Reticulatae Pericarpium(actually Citri Exocarpium Rubbum), 82.6 g of Magnoliae Officinalis Cortex, 82.6 g of Platycodonis Radix, 123.9 g of Pogostemonis Herba, and 103.25 g of Glycyrrhizae Radix et Rhizoma. In this formula, Magnoliae Officinalis Cortex is processed according to the specifications for ginger-processed products, Glycyrrhizae Radix et Rhizoma is processed according to the specifications for stir-fried products, and other herbs are used in their raw products. The botanical sources of the herbs are consistent with the 2020 edition of Pharmacopoeia of the People's Republic of China. The above herbs are ground into a fine powder with a particle size passing through a No. 5 sieve. For each dose, take 8.26 g of the powdered formula, add 300 mL of water, along with 3 g of Zingiberis Rhizoma Recens and 3 g of Jujubae Fructus, and decoct until reduced to 140 mL. The decoction should be administered hot, with three times daily. To induce sweating, the patient should be kept warm under a quilt, and an additional dose should be prepared and taken if needed. This formula is traditionally used to relieve the exterior and resolve dampness, regulate Qi and harmonize the middle, which is mainly used to treat a series of diseases of digestive and respiratory systems. However, potential adverse reactions, including allergies, purpura and disulfiram-like reactions, should be considered during clinical use. Huoxiang Zhengqisan features a rational composition, extensive clinical application, and strong potential for further research and development.
6.Textual Research on Lianggesan from Ancient Literature and Its Modern Clinical Application
Weilu NIU ; Chengqi LYU ; Mengjie YANG ; Shunxi WANG ; Jingkang QIAO ; Huangchao JIA ; Liyun WANG ; Xuewei LIU ; Mingsan MIAO ; Jianwei LI ; Gang WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):223-234
Lianggesan was first recorded in Taiping Huimin Heji Jufang, which was composed of Rhei Radix et Rhizoma, Natrii Sulfas, Gardeniae Fructus, Forsythiae Fructus, Scutellariae Radix, Glycyrrhizae Radix et Rhizoma(GRR), Menthae Haplocalycis Herba, Lophatheri Herba and Mel. It was clinically applied to treat fire-heat syndrome in the upper and middle Jiao, and the curative effect was positive. In this study, the bibliometric method was used to conduct a detailed textual research on the formula name, medicinal composition, dosage evolution, origin and processing, functional indications and other aspects of Lianggesan. Research revealed that Lianggesan has six other names, such as Lianqiao Yinzi, Lianqiao Jiedusan, Jufang Lianggesan, Jiegu Lianggesan, Hejian Lianggesan and Qingji Lianggesan. Based on the edition of Taiping Huimin Heji Jufang, an analysis of the evolution of its formula composition revealed that the missing Chinese medicines were predominantly bamboo leaves and honey, while the added Chinese medicines were primarily supplements introduced to address changes in disease manifestations. After textual research, the dosage for one dose of Lianggesan from Taiping Huimin Heji Jufang was as follows:826 g of Rhei Radix et Rhizoma, 826 g of Natrii Sulfas, 826 g of GRR, 413 g of Gardeniae Fructus, 413 g of Menthae Haplocalycis Herba, 413 g of Scutellariae Radix, and 1652 g of Forsythiae Fructus. Decocting method was as following:Grinding the Chinese medicines into coarse powder(2-4 mm), taking 8.16 g per dose, adding 300 mL of water, along with 2 g of Lophatheri Herba and 5 g of Mel, and decocting to 140 mL. The residue was removed and taken warmly 30 min after meals. It was recommended to take it three times daily until improvement was achieved. The origins of the 9 Chinese medicines were consistent with the 2020 edition of Pharmacopoeia of the People's Republic of China. Except for GRR, which required single frying(stir-frying), the remaining medicines were all raw products. The description of the function of this formula in ancient books was summarized as purging fire and promoting bowel movements, clearing heat from the upper body and purging the lower body, and the main syndromes included facial redness, tongue swelling, red eyes, etc. In modern applications, the formula is primarily used for respiratory and digestive system diseases, including acute lung injury, chronic obstructive pulmonary disease, herpetic angina and aphthous stomatitis, covering 142 types of diseases. In summary, this paper can provide a basis for further research and development of Lianggesan through the literature review and key information combing.
7.Ethical considerations of using the deceased as medical research subjects
Zhaolong LU ; Xiaoyun CHEN ; Yongchuan CHEN ; Mengjie YANG ; Qiang LIU ; Hui JIANG ; Zhonglin CHEN
Chinese Medical Ethics 2025;38(11):1447-1452
The relevant laws and regulations regarding the utilization of the deceased as medical research subjects are not yet fully developed in China nowadays. Taking the deceased as research subjects as a starting point, this paper discussed the definition of the deceased and the scope of their interest protection from multiple perspectives. It posited that the scope of interest protection for the deceased encompassed two components: spiritual personality interests and material personality interests represented by the remains. The spiritual personality interests of the deceased included identification information such as name, portrait, reputation, honor, privacy, and personal information, as well as medical and health information. The personal information of the deceased was not directly affected by the individual’s life and death status and remained relatively independent. In terms of ethical review, the research team approached from two perspectives: the remains and the personal information of the deceased. Based on the standard of whether the research subjects involve a human body, research with the remains of the deceased as the medical research subjects was classified as non-clinical research. According to the standard of whether a human body is clinically operated, research with the personal information of the deceased (including medical and health information) as the medical research subjects was recognized as clinical research without human research operation. This approach provided evidence for the application of existing laws and regulations in ethical review and record management. The ethical review of investigator-initiated clinical research conducted in medical and health institutions, as well as the regulatory conditions for exemption from ethical review, were examined. The forms, content, and acquisition of informed consent were summarized, and the risk-benefit characteristics of the research activity were evaluated, with a view to providing a basis for the smooth and compliant implementation of research activities involving the deceased as medical research subjects.
8.SAE1 promotes tumor cell malignancy via SUMOylation and liquid-liquid phase separation facilitated nuclear export of p27.
Ling WANG ; Jie MIN ; Jinjun QIAN ; Xiaofang HUANG ; Xichao YU ; Yuhao CAO ; Shanliang SUN ; Mengying KE ; Xinyu LV ; Wenfeng SU ; Mengjie GUO ; Nianguang LI ; Shiqian QI ; Hongming HUANG ; Chunyan GU ; Ye YANG
Acta Pharmaceutica Sinica B 2025;15(4):1991-2007
Most cancers are currently incurable, partly due to abnormal post-translational modifications (PTMs). In this study, we initially used multiple myeloma (MM) as a working model and found that SUMOylation activating enzyme subunit 1 (SAE1) promotes the malignancy of MM. Through proteome microarray analysis, SAE1 was identified as a potential target for bioactive colcemid or its derivative colchicine. Elevated levels of SAE1 were associated with poor clinical survival and increased MM proliferation in vitro and in vivo. Additionally, SAE1 directly SUMOylated and upregulated the total protein expression of p27, leading to LLPS-mediated nuclear export of p27. Our study also demonstrated the involvement of SAE1 in other types of cancer cells, and provided the first monomer crystal structure of SAE1 and its key binding model with colchicine. Colchicine also showed promising results in the Patient-Derived Tumor Xenograft (PDX) model. Furthermore, a controlled clinical trial with 56 MM patients demonstrated the clinical efficacy of colchicine. Our findings reveal a novel mechanism by which tumor cells evade p27-induced cellular growth arrest through p27 SUMOylation-mediated nuclear export. SAE1 may serve as a promising therapeutic target, and colchicine may be a potential treatment option for multiple types of cancer in clinical settings.
9.Author Correction: LIMP-2 enhances cancer stem-like cell properties by promoting autophagy-induced GSK3β degradation in head and neck squamous cell carcinoma.
Yuantong LIU ; Shujin LI ; Shuo WANG ; Qichao YANG ; Zhizhong WU ; Mengjie ZHANG ; Lei CHEN ; Zhijun SUN
International Journal of Oral Science 2025;17(1):26-26
10.Latent profile analysis of occupational burnout and its influencing factors among biosafety laboratory workers
Baojun LI ; Lei DING ; Jing YU ; Mengjie XIA ; Zhencheng LIU ; Qingyue YANG ; Yaoqin LU
Journal of Environmental and Occupational Medicine 2025;42(12):1472-1479
Background Staff in biosafety laboratories (BSL) are more likely to experience occupational burnout and other psychological issues due to their unique working environment and high job demands. However, current research in this field tends to focus on overall analyses, overlooking the internal differences within this group. Objective To explore latent profiles of occupational burnout among BSL workers and their influencing factors, providing a reference for targeted burnout interventions. Methods In 2022, cluster random sampling was used to select

Result Analysis
Print
Save
E-mail