1.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
2.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
3.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
4.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
5.Trend in disease burden of injuries among children and adolescents in China from 1990 to 2021
GUO Shihong ; HUANG Jingjing ; CHEN Yi ; LI Qingqing ; LIU Chunting ; HE Yunyan ; MENG Tingting ; ZHOU Jiali
Journal of Preventive Medicine 2025;37(10):1069-1074
Objective:
To investigate the trend in disease burden of injuries among children and adolescents in China from 1990 to 2021, so as to provide a basis for formulating prevention and control strategies and reducing this disease burden.
Methods:
Data on mortality, disability-adjusted life years (DALY) rate, incidence, and prevalence of injuries among children and adolescents aged <20 years in China from 1990 to 2021 were collected from the Global Burden of Disease (GBD) 2021 database. All rates were standardized using the GBD 2021 world standard population. The trend in incidence of disease burden of injuries among children and adolescents across differents genders and ages from 1990 to 2021 was evaluated using average annual percent change (AAPC).
Results:
From 1990 to 2021, the standardized mortality (AAPC=-5.435%), standardized DALY rate (AAPC=-5.311%), standardized incidence (AAPC=-0.466%), and standardized prevalence (AAPC=-0.810%) of injuries among children and adolescents in China showed downward trends (all P<0.05). Among these, the standardized mortality of animal contact (AAPC=-9.138%) and the standardized DALY rate of medical side effects (AAPC=-8.389%) decreased at a relatively fast pace, while the standardized incidence of falls (AAPC=0.083%) and the standardized prevalence of exposure to natural forces (AAPC=2.656%) showed upward trends (all P<0.05). The standardized mortality, standardized DALY rate, standardized incidence and standardized prevalence of injuries were higher in males than in females. The trend in males showed a downward trend (all P<0.05), consistent with the total population. The crude incidence of injuries in the group aged 15-<20 years showed an upward trend (AAPC=0.391%, P<0.05), while the trend in the group aged 10-<15 years was not statistically significant (P>0.05). The crude incidence of injuries in the groups aged 5-<10 years and <5 years showed downward trends (AAPC=-0.488% and -2.275%, both P<0.05). In 2021, the <5 years age group had the highest crude mortality and crude DALY rate of injuries, at 13.94/100 000 and 1 257.26/100 000, respectively. The 15-<20 years age group exhibited the highest crude incidence and crude prevalence, at 4 874.05/100 000and 4 050.35/100 000, respectively. Drowning and falls were major components of the disease burden across all age groups.
Conclusions
From 1990 to 2021, the disease burden of injuries among children and adolescents in China showed an overall downward trend. The disease burden was consistently higher in males than in females. Children aged <5 years face a high risk of fatality and disability, while adolescents aged 15-<20 years experience a high incidence and frequency of injuries. Drowning and falls were key priorities for prevention and control.
6.Neuroblastoma risk decreased by NSUN3 rs7653521 C>T polymorphism in Chinese children.
Meng LI ; Xinxin ZHANG ; Lei LIN ; Lei MIAO ; Haiyan WU ; Chunlei ZHOU ; Jing HE
Chinese Medical Journal 2025;138(17):2204-2206
7.Research progress on variety breeding of root- and rhizome-derived traditional Chinese medicine.
Yan CHEN ; Miao-Yin DONG ; Zhan-Feng CAO ; Xue-Zhou LIU ; Meng-Fei LI ; Jian-He WEI
China Journal of Chinese Materia Medica 2025;50(2):363-383
Germplasm degeneration occurs during the long-term cultivation of root-and rhizome-derived traditional Chinese medicine(RR-TCM), which seriously restricts the high-quality development of their industry. Therefore, it is urgent to solve the problem of germplasm degeneration through variety breeding. In this paper, based on previously published research articles, monographs, and news reports, the research progresses on the number and origins, breeding methods, and selection of new varieties of RR-TCM listed in the Chinese Pharmacopoeia(Edition 2020) were summarized and analyzed. The results show that there are 169 kinds of RR-TCM listed in the Chinese Pharmacopoeia(Edition 2020), originated from 223 origins with three breeding methods(i.e., seed propagation, vegetative reproduction, and tissue culture), and there are 215 species derived from seed propagation, 177 species derived from vegetative reproduction, and 164 species derived from tissue culture. To date, there are 62 origins breeding new varieties through conventional breeding, cross breeding, mutation breeding, ploidy breeding, or modern biotechnology breeding methods, including 57 origins breeding 145 new varieties through conventional breeding, 10 origins breeding 43 new varieties through mutation breeding, and seven origins breeding 12 new varieties through cross breeding method. They are used mainly to improve yield, disease resistance, and active ingredient content, but only a few new varieties have been widely used. This review will provide useful references in variety breeding, quality breeding, and standardized planting of RR-TCM.
Plant Breeding/methods*
;
Plant Roots/growth & development*
;
Rhizome/growth & development*
;
Drugs, Chinese Herbal
;
Plants, Medicinal/classification*
;
Medicine, Chinese Traditional
8.Sini Powder Alleviates Stress Response and Suppresses Hepatocellular Carcinoma Development by Restoring Gut Microbiota.
Si MEI ; Zhe DENG ; Fan-Ying MENG ; Qian-Qian GUO ; He-Yun TAO ; Lin ZHANG ; Chang XI ; Qing ZHOU ; Xue-Fei TIAN
Chinese journal of integrative medicine 2025;31(9):802-811
OBJECTIVES:
To explore the underlying pharmacological mechanisms and its potential effects of Chinese medicine herbal formula Sini Powder (SNP) on hepatocellular carcinoma (HCC).
METHODS:
The active components of SNP and their in vivo distribution were identified using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Construction of component-target-disease networks, protein-protein interaction network, Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and molecular docking were employed to analyze the active components and anti-HCC mechanisms of SNP. Cell viability assay and wound healing assay were utilized to confirm the effect of SNP-containing serum (2.5%, 5.0%, 10%, 20%, and 40%), isoprenaline or propranolol (both 10, 100, and 1,000 µ mol/L) on proliferation and migration of HepG 2 or Huh7 cells. Meanwhile, the effect of isoprenaline or propranolol on the β 2 adrenergic receptor (ADRB2) mRNA expression on HepG2 cells were measured by real-time quantitative reverse transcription (RT-qPCR). Mice with subcutaneous tumors were either subjected to chronic restraint stress (CRS) followed by SNP administration (364 mg/mL) or directly treated with SNP (364 mg/mL). These two parallel experiments were performed to validate the effects of SNP on stress responses. Stress-related proteins and hormones were quantified using RT-qPCR, enzyme-linked immunosorbent assay, and immunohistochemistry. Metagenomic sequencing was performed to confirm the influence of SNP on the gut microbiota in the tumor-bearing CRS mice.
RESULTS:
The distribution of the 12 active components of SNP was confirmed in various tissues and feces. Network pharmacology analysis confirmed the anti-HCC effects of the 5 active components. The potential anti-HCC mechanisms of SNP may involve the epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein kinase Src (SRC) and signal transducer and activator of transcription 3 (STAT3) pathways. SNP-containing serum inhibited the proliferation of HepG2 and Huh7 cells at concentrations of 2.5% and 5.0%, respectively, after 24 h of treatment. Furthermore, SNP suppressed tumor progression in tumor-bearing mice exposed to CRS. SNP treatment also downregulated the expressions of stress-related proteins and pro-inflammatory cytokines, primarily by modulating the gut microbiota. Specifically, the abundance of Alistipes and Prevotella, which belong to the phylum Bacteroidetes, increased in the SNP-treated group, whereas Lachnospira, in the phylum Firmicutes, decreased.
CONCLUSION
SNP can combat HCC by alleviating stress responses through the regulation of gut microbiota.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Liver Neoplasms/microbiology*
;
Carcinoma, Hepatocellular/microbiology*
;
Humans
;
Drugs, Chinese Herbal/therapeutic use*
;
Powders
;
Cell Proliferation/drug effects*
;
Mice
;
Molecular Docking Simulation
;
Cell Line, Tumor
;
Hep G2 Cells
;
Receptors, Adrenergic, beta-2/genetics*
;
Stress, Physiological/drug effects*
;
Cell Movement/drug effects*
;
Male
;
Protein Interaction Maps/drug effects*
;
Cell Survival/drug effects*
;
Proto-Oncogene Mas
9.Expert consensus on pulpotomy in the management of mature permanent teeth with pulpitis.
Lu ZHANG ; Chen LIN ; Zhuo CHEN ; Lin YUE ; Qing YU ; Benxiang HOU ; Junqi LING ; Jingping LIANG ; Xi WEI ; Wenxia CHEN ; Lihong QIU ; Jiyao LI ; Yumei NIU ; Zhengmei LIN ; Lei CHENG ; Wenxi HE ; Xiaoyan WANG ; Dingming HUANG ; Zhengwei HUANG ; Weidong NIU ; Qi ZHANG ; Chen ZHANG ; Deqin YANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Jingzhi MA ; Shuli DENG ; Xiaoli XIE ; Xiuping MENG ; Jian YANG ; Xuedong ZHOU ; Zhi CHEN
International Journal of Oral Science 2025;17(1):4-4
Pulpotomy, which belongs to vital pulp therapy, has become a strategy for managing pulpitis in recent decades. This minimally invasive treatment reflects the recognition of preserving healthy dental pulp and optimizing long-term patient-centered outcomes. Pulpotomy is categorized into partial pulpotomy (PP), the removal of a partial segment of the coronal pulp tissue, and full pulpotomy (FP), the removal of whole coronal pulp, which is followed by applying the biomaterials onto the remaining pulp tissue and ultimately restoring the tooth. Procedural decisions for the amount of pulp tissue removal or retention depend on the diagnostic of pulp vitality, the overall treatment plan, the patient's general health status, and pulp inflammation reassessment during operation. This statement represents the consensus of an expert committee convened by the Society of Cariology and Endodontics, Chinese Stomatological Association. It addresses the current evidence to support the application of pulpotomy as a potential alternative to root canal treatment (RCT) on mature permanent teeth with pulpitis from a biological basis, the development of capping biomaterial, and the diagnostic considerations to evidence-based medicine. This expert statement intends to provide a clinical protocol of pulpotomy, which facilitates practitioners in choosing the optimal procedure and increasing their confidence in this rapidly evolving field.
Humans
;
Calcium Compounds/therapeutic use*
;
Consensus
;
Dental Pulp
;
Dentition, Permanent
;
Oxides/therapeutic use*
;
Pulpitis/therapy*
;
Pulpotomy/standards*
10.Expert consensus on management of instrument separation in root canal therapy.
Yi FAN ; Yuan GAO ; Xiangzhu WANG ; Bing FAN ; Zhi CHEN ; Qing YU ; Ming XUE ; Xiaoyan WANG ; Zhengwei HUANG ; Deqin YANG ; Zhengmei LIN ; Yihuai PAN ; Jin ZHAO ; Jinhua YU ; Zhuo CHEN ; Sijing XIE ; He YUAN ; Kehua QUE ; Shuang PAN ; Xiaojing HUANG ; Jun LUO ; Xiuping MENG ; Jin ZHANG ; Yi DU ; Lei ZHANG ; Hong LI ; Wenxia CHEN ; Jiayuan WU ; Xin XU ; Jing ZOU ; Jiyao LI ; Dingming HUANG ; Lei CHENG ; Tiemei WANG ; Benxiang HOU ; Xuedong ZHOU
International Journal of Oral Science 2025;17(1):46-46
Instrument separation is a critical complication during root canal therapy, impacting treatment success and long-term tooth preservation. The etiology of instrument separation is multifactorial, involving the intricate anatomy of the root canal system, instrument-related factors, and instrumentation techniques. Instrument separation can hinder thorough cleaning, shaping, and obturation of the root canal, posing challenges to successful treatment outcomes. Although retrieval of separated instrument is often feasible, it carries risks including perforation, excessive removal of tooth structure and root fractures. Effective management of separated instruments requires a comprehensive understanding of the contributing factors, meticulous preoperative assessment, and precise evaluation of the retrieval difficulty. The application of appropriate retrieval techniques is essential to minimize complications and optimize clinical outcomes. The current manuscript provides a framework for understanding the causes, risk factors, and clinical management principles of instrument separation. By integrating effective strategies, endodontists can enhance decision-making, improve endodontic treatment success and ensure the preservation of natural dentition.
Humans
;
Root Canal Therapy/adverse effects*
;
Consensus
;
Root Canal Preparation/adverse effects*


Result Analysis
Print
Save
E-mail