1.Network analysis of factors related to non suicidal self injury among middle school students in Guizhou Province
ZHAO Wenxin, TIAN Meng, CHEN Siyuan, WU Jinyi, GAO Ying, DENG Xiwen, ZHANG Wanzhu
Chinese Journal of School Health 2025;46(1):92-95
Objective:
To explore the relationship between related factors of non-suicidal self-injury behavior (NSSI) among middle school students in Guizhou Province, so as to provide the evidence for preventing high risk behaviors in adolescents.
Methods:
A stratified cluster random sampling method was used to select 1 034 junior and senior middle school students from Zunyi City, Qiannan Prefecture and Tongren City in Guizhou Province from April to October in 2023. Questionnaire survey was conducted to collect information including Adolescent Self injury Scale and Family Assessment Device. The R 4.4.1 software was employed for network analysis visualization, centrality indicators, and result stability assessment.
Results:
The detection rate of NSSI behavior among middle school students in Guizhou province was 29.6%, with a detection rate of 25.5% for boys and 33.1% for girls, showing a statistically significant difference ( χ 2=7.07, P <0.05). There were statistically significant differences in scores of emotional communication, egoism, family rules, positive communication, problem solving, expression of positive emotions and management of negative emotions self-efficacy, and bullying victimization in various dimensions between middle school students with and without NSSI ( Z =-13.66 to -7.05, P <0.01). NSSI among middle school students was positively correlated with social/relational bullying, depression and anxiety, and there were relatively close connections in the network ( r =0.35, 0.43, 0.42, P <0.01). Centrality indicators showed that the highest in strength and closeness centrality were stress ( Z =1.29, 1.58), the highest in betweenness centrality was for emotional communication ( Z =1.91), and the highest in expected influence index was for physical bullying ( Z =1.44)( P < 0.05).
Conclusions
Stress, emotional communication and physical bullying have significant impacts in the network of factors related to NSSI. Social/relational bullying, depression and anxiety have strong direct correlations with NSSI behavior among middle school students.
2.In vitro studies of the anti-inflammatory activity of micheliolide on myeloproliferative neoplasm cell lines
Meng CHEN ; Jinqin LIU ; Ying ZHANG ; Zhexin SHI ; Zhijian XIAO
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):68-79
Objective:
The effects and molecular mechanisms of micheliolide on cytokine expression in myeloproliferative neoplasm cell lines were explored based on the signal transducer and activator of transcription 3 (STAT3)/nuclear factor-kappa B (NF-κB) signaling pathways.
Methods:
The UKE-1 and SET-2 cell lines were investigated, and micheliolide concentrations were screened using the CCK-8 assay. The UKE-1 and SET-2 cells were divided into the control and micheliolide-treated groups at concentrations of 2.5, 5.0, and 10.0 μmol/L. Each group received 1 mL of micheliolide solution at final concentrations of 2.5, 5.0, and 10.0 μmol/L, respectively, whereas the control group only received an equal volume of culture medium. The inhibition rates of interleukin-1β(IL-1β), tumor necrosis factor-α (TNF-α), and chemokine ligand 2 (CCL2) mRNA expression in cells from each group were detected using real-time fluorescent PCR (RT-PCR). Western blotting was used to measure STAT3 and phosphorylated STAT3 (p-STAT3) protein expression levels in cells from each group. Reversal experiments with reduced glutathione and dithiothreitol were performed using UKE-1 cells, which were divided into the control group, micheliolide, micheliolide + glutathione, micheliolide + dithiothreitol, and glutathione + dithiothreitol groups. Western blotting was used to detect the STAT3 and p-STAT3 protein expression levels in the cells of each group. UKE-1 cells were stimulated with TNF-α (5 μg/L) to replicate a pathological model of excessive cytokine secretion. Subsequently, UKE-1 cells were divided into the control, model, and three micheliolide-treated groups at concentrations of 2.5, 5.0, and 10.0 μmol/L. RT-PCR was used to measure the indicators above. An enzyme-linked immunosorbent assay (ELISA) was used to detect the CCL2 content in the cell culture media of each group. Western blotting was performed to assess the protein expression levels of STAT3, p-STAT3, and proteins related to the NF-κB signaling pathway.
Results:
Compared with the control group, the proliferation inhibition rates of UKE-1 cells at 24, 48, and 72 h increased in the micheliolide-treated groups at concentrations of 2.5, 5.0, 10.0, and 20.0 μmol/L. Similarly, the proliferation inhibition rates of SET-2 at 48 and 72 h increased in the micheliolide-treated groups at concentrations of 5.0, 10.0, and 20.0 μmol/L (P<0.05). Concentrations of 2.5, 5.0, and 10.0 μmol/L were selected for further studies to exclude the potential influence of high micheliolide concentrations on subsequent result owing to reduced cell numbers. Compared with the control group, the inhibition rates of TNF-α mRNA expression in UKE-1 and SET-2 cells increased in the micheliolide-treated groups at concentrations of 2.5, 5.0, and 10.0 μmol/L. Similarly, the inhibition rates of IL-1β mRNA expression in UKE-1 and SET-2 cells also increased in the micheliolide-treated groups at concentrations of 5.0 and 10.0 μmol/L. Additionally, the inhibition rate of CCL2 mRNA expression in UKE-1 and SET-2 cells increased in the micheliolide-treated group at a concentration of 10 μmol/L (P<0.05). Compared with the model group, the inhibition rates of TNF-α, IL-1β, and CCL2 mRNA expression in UKE-1 cells increased in the micheliolide-treated groups at concentrations of 2.5, 5.0, and 10.0 μmol/L after stimulation with TNF-α (P<0.05). ELISA showed that compared with the control group, the CCL2 content in UKE-1 cells increased in the model group. Compared with the model group, the CCL2 content in UKE-1 cells decreased in the micheliolide-treated groups at concentrations of 2.5, 5.0, and 10.0 μmol/L (P<0.05). Western blotting showed that compared with the control group, the p-STAT3 protein expression levels in UKE-1 and SET-2 cells were downregulated in the micheliolide-treated groups at concentrations of 5.0 and 10.0 μmol/L, and the protein expression level of STAT3 in SET-2 was also downregulated (P<0.05). Compared with the control group, the p-STAT3 expression level in UKE-1 cells decreased in the micheliolide group in the reductive glutathione and dithiothreitol reversal experiments. Compared with the micheliolide group, the p-STAT3 protein expression levels in UKE-1 cells increased in the micheliolide + dithiothreitol and micheliolide + glutathione groups (P<0.05). Compared with the control group, the model group showed increased p-STAT3, p-IκKα/β, p-IκBα, and p-NF-κB p65 protein expression and decreased IκBα protein expression after stimulation with TNF-α. Compared with the model group, the micheliolide-treated groups showed decreased p-IκKα/β, p-IκBα, p-STAT3, and p-NF-κB p65 protein expression at concentrations of 2.5, 5.0, and 10.0 μmol/L, whereas the micheliolide-treated groups showed increased IκBα protein expression at concentrations of 5.0 and 10.0 μmol/L (P<0.05).
Conclusion
Micheliolide potently suppresses IL-1β, TNF-α, and CCL2 mRNA expression in UKE-1 and SET-2 cells, as well as CCL2 secretion by UKE-1 cells, which may be associated with STAT3 phosphorylation suppression and NF-κB signaling pathway activation.
3.Effect of Exercise Intervention on Bone Mineral Density in Postmenopausal Osteoporosis Woman——a Network Meta-analysis
Ying HAO ; Ning-Ning YANG ; Meng-Ying SUN ; Xiao-Bin ZHOU ; Zhuo CHEN
Progress in Biochemistry and Biophysics 2025;52(6):1544-1559
Postmenopausal osteoporosis (PMOP) is a chronic metabolic bone disease caused by a decrease in estrogen levels. With the acceleration of population aging process, the public health burden caused by it is becoming increasingly severe. The prevalence rate of osteoporosis in people over 65 years old in China is as high as 32%, which is especially prominent after menopause, which is about 5 times that of elderly men. About 40% of postmenopausal women are at risk of osteoporotic fractures, with a disability rate of up to 50% and a fatality rate of about 20%. The prevention and treatment of osteoporosis has become a major public health issue of global concern, and it is particularly urgent to develop reasonable and effective prevention and treatment programs and explore their scientific basis. Exercise is an important non-drug means for the prevention and treatment of PMOP, it can improve estrogen levels and the expression of bone formation transcription factors, and inhibit the levels of proinflammatory factors and bone resorption markers, macroscopically manifested by the improvement of bone microstructure and bone density. However, the effectiveness of exercise in improving bone mineral density (BMD) remains controversial. Some studies revealed significant changes of bone to mechanical stimulation, while others showed no significant effect of mechanical training, this heterogeneity in bone adapt to mechanical stimulation is particularly evident in postmenopausal women. Although the evidence that a wide range of exercise programs can improve osteoporosis, the optimal solution to address bone mineral loss remains unclear. The most effective exercise type, dosage and personalized adaptation are still being determined. This study will fully consider the differences in gender and hormone levels, searching and screening randomized controlled trials of PubMed, CNKI and other databases regarding exercise improving bone mineral density in women with PMOP. Strictly following the PRISMA guidelines to reviewed and compared the effects of different types of exercise modalities on BMD at different sites in women with PMOP by network Meta-analysis, to provide theoretical guidance to maintain or improve BMD in women with PMOP.
4.Exploration and Practice of Artificial Intelligence Empowering Case-based Teaching in Biochemistry and Molecular Biology
Ying-Lu HU ; Yi-Chen LIN ; Jun-Ming GUO ; Xiao-Dan MENG
Progress in Biochemistry and Biophysics 2025;52(8):2173-2184
In recent years, the deep integration of artificial intelligence (AI) into medical education has created new opportunities for teaching Biochemistry and Molecular Biology, while also offering innovative solutions to the pedagogical challenges associated with protein structure and function. Focusing on the case of anaplastic lymphoma kinase (ALK) gene mutations in non-small-cell lung cancer (NSCLC), this study integrates AI into case-based learning (CBL) to develop an AI-CBL hybrid teaching model. This model features an intelligent case-generation system that dynamically constructs ALK mutation scenarios using real-world clinical data, closely linking molecular biology concepts with clinical applications. It incorporates AI-powered protein structure prediction tools to accurately visualize the three-dimensional structures of both wild-type and mutant ALK proteins, dynamically simulating functional abnormalities resulting from conformational changes. Additionally, a virtual simulation platform replicates the ALK gene detection workflow, bridging theoretical knowledge with practical skills. As a result, a multidimensional teaching system is established—driven by clinical cases and integrating molecular structural analysis with experimental validation. Teaching outcomes indicate that the three-dimensional visualization, dynamic interactivity, and intelligent analytical capabilities provided by AI significantly enhance students’ understanding of molecular mechanisms, classroom engagement, and capacity for innovative research. This model establishes a coherent training pathway linking “fundamental theory-scientific research thinking-clinical practice”, offering an effective approach to addressing teaching challenges and advancing the intelligent transformation of medical education.
5.Molecular and therapeutic landscape of ferroptosis in skin diseases
Jiayuan LE ; Yu MENG ; Ying WANG ; Daishi LI ; Furong ZENG ; Yixiao XIONG ; Xiang CHEN ; Guangtong DENG
Chinese Medical Journal 2024;137(15):1777-1789
Regulated cell death (RCD) is a critical physiological process essential in maintaining skin homeostasis. Among the various forms of RCD, ferroptosis stands out due to its distinct features of iron accumulation, lipid peroxidation, and involvement of various inhibitory antioxidant systems. In recent years, an expanding body of research has solidly linked ferroptosis to the emergence of skin disorders. Therefore, understanding the mechanisms underlying ferroptosis in skin diseases is crucial for advancing therapy and prevention strategies. This review commences with a succinct elucidation of the mechanisms that underpin ferroptosis, embarks on a thorough exploration of ferroptosis’s role across a spectrum of skin conditions, encompassing melanoma, psoriasis, systemic lupus erythematosus (SLE), vitiligo, and dermatological ailments precipitated by ultraviolet (UV) exposure, and scrutinizes the potential therapeutic benefits of pharmacological interventions aimed at modulating ferroptosis for the amelioration of skin diseases.
6.Research progress of inducing ferroptosis of cancer stem cells against colorectal cancer
Li-Na GONG ; Meng-Ling YUAN ; Xue-Ying CHENG ; Chen-Yang XU ; Jun PAN ; Qiu-Tong CHEN ; Ling WANG ; Zi-Li ZHANG ; Mei GUO
Chinese Pharmacological Bulletin 2024;40(6):1030-1034
Cancer stem cell(CSC)are the"seed"cells in the occurrence,development,metastasis and recurrence of colorectal cancer.Targeted killing of CSC provides a new target for anti-colorectal cancer therapy.Ferroptosis is an iron-dependent cell death mode due to the abnormal accumulation of intracellular i-ron ions,which results in the massive reactive oxygen species(ROS)and lipid peroxides,leading to cell death.Studies have shown that cancer stem cells are more enriched in iron ions than non-CSC,which provides a new perspective for targeting ferropto-sis in cancer stem cells against colorectal cancer.This article re-views the research progress of inducing CSC ferroptosis in the treatment of colorectal cancer,such as targeted regulation of SLC7A11 expression in CSC,chelating iron in CSC lysosomes,targeting CSC phenotypic plasticity,reversing CSC iron homeo-stasis,and targeting CSC lipid droplet metabolism induce CSC ferroptosis,which provides new ideas for anti-tumor therapy.
7.Proanthocyanin B2 inhibits oxidative stress and alleviates H2O2 induced damage to human oligodendrocytes through NRF2/HO-1/xCT/GPX4 axis
Jian LIU ; Ying CHEN ; Ya-Jie LIANG ; Meng PU ; Zi-Wei ZHANG ; Lu-Lu ZHENG ; Zhi CHAI ; Ying XIAO ; Cun-Gen MA ; Qing WANG
Chinese Pharmacological Bulletin 2024;40(9):1735-1743
Aim To explore the protective effect of an-thocyanin B2(PCB2)on hydrogen peroxide(H2O2)induced oxidative damage and apoptosis in human oli-godendrocytes(MO3.13)and the underlying mecha-nism.Methods The optimal concentration of H2O2 and PCB2 for action was screened,and divided into normal group,PCB2 group(100 mg·L-1 PCB2 treat-ment for 24 hours),H2 O2 model group(500 μmol·L-1 H2O2 treatment for 24 hours),and H2O2+PCB2 group(500 μmol·L-1 H2O2 and 100 mg·L-1 PCB2 co-treated for 24 hours).FRAP method was used to detect the antioxidant capacity of PCB2;CCK-8 meth-od was used to detect the survival rate of cells in each group,while LDH method was used to assess cytotoxic-ity.Microenzyme-linked immunosorbent assay and ELISA were used to examine the levels of LDH,NO,H2O2,as well as the activities of CAT and SOD in each group of cells.Immunofluorescence and Western blot were used to detect the protein expression levels of NRF2,xCT,HO-1,ferritin,and GPX4 in each group of cells.FerroOrange fluorescent probe was used to de-tect the intracellular content of ferrous ions(Fe2+).Results H2O2 could induce MO3.13 oxidative dam-age and lead to cell ferroptosis,while PCB2 could alle-viate MO3.13 oxidative damage and ferroptosis.Com-pared with the H2O2 model group,PCB2 intervention could significantly increase LDH content in MO3.13,reduce NO and H2O2 content,and improve SOD and CAT activity,and up-regulate the protein expression levels of NRF2,xCT,HO-1,ferritin,and GPX4.Conclusion PCB2 can enhance cellular antioxidant capacity and alleviate H2O2 induced MO3.13 oxidative damage through the NRF2/HO-1/xCT/GPX4 axis.
8.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
9.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
10.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.


Result Analysis
Print
Save
E-mail