1.Targeting fibroblast growth factor receptor 1 signaling to improve bone destruction in rheumatoid arthritis
Haihui HAN ; Lei RAN ; Xiaohui MENG ; Pengfei XIN ; Zheng XIANG ; Yanqin BIAN ; Qi SHI ; Lianbo XIAO
Chinese Journal of Tissue Engineering Research 2025;29(9):1905-1912
BACKGROUND:Although researchers have noted that fibroblast growth factor receptor 1 shows great potential in rheumatoid arthritis bone destruction,there is a lack of reviews related to the potential mechanisms of fibroblast growth factor receptor 1 in rheumatoid arthritis bone destruction. OBJECTIVE:To comprehensively analyze the mechanism of fibroblast growth factor receptor 1 in bone destruction in rheumatoid arthritis by reviewing the relevant literature at both home and abroad. METHODS:We searched the CNKI database using the Chinese search terms"fibroblast growth factor receptor 1,rheumatoid arthritis,bone destruction,bone cells,osteoblasts,osteoclasts,chondrocytes,macrophages,synovial fibroblasts,T cells,vascular endothelial cells."PubMed database was searched using the English search terms"fibroblast growth factor receptor 1,rheumatoid arthritis,bone destruction,osteocytes,osteoblasts,osteoclasts,chondrocytes,macrophages,synovial fibroblasts,T cells,endothelial cells."The search period focused on April 1992 to January 2024.After screening the literature by reading titles,abstracts,and full texts,a total of 82 articles were finally included for review according to inclusion and exclusion criteria. RESULTS AND CONCLUSION:Fibroblast growth factor receptor 1 was found to be widely expressed in bone tissue-associated cells,including osteoblasts,osteoclasts,and osteoclasts.Fibroblast growth factor receptor 1 affects bone remodeling and homeostasis by regulating the function of these cells,as well as promoting the onset and progression of bone destruction in rheumatoid arthritis.Fibroblast growth factor receptor 1 is involved in the inflammatory response of synovial fibroblasts and macrophages and regulates angiogenesis of endothelial cells in synovial tissues.Fibroblast growth factor receptor 1 promotes bone destruction in several ways.Fibroblast growth factor receptor 1 may be a potential causative agent of bone destruction in rheumatoid arthritis and provides a reference for further research on its therapeutic targets.
2.Chemical consitituents and hypoglycemic activity of Qinhuai No. 1 Rehmannia glutinosa
Meng YANG ; Zhi-you HAO ; Xiao-lan WANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Shi-qi ZHOU ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2025;60(1):205-210
Eight compounds were isolated and purified from the ethyl acetate part of 70% acetone extract of
3.Effect of weight monitoring feedback intervention among primary school students
HUANG Yangmei ; SHEN Xujuan ; XIE Dongying ; ZHANG Qi ; ZHENG Zicong ; WANG Meng
Journal of Preventive Medicine 2025;37(6):541-545
Objective:
To evaluate the effect of weight monitoring feedback intervention among primary school students, so as to provide the evidence for strengthening children's weight management.
Methods:
In October 2023, students from grades four to six in a primary school in Hangzhou City were selected and randomly assigned to a control group and an intervention group on a class-by-class basis. The included primary school students had their height and weight measured at a fixed time each week, and the results were fed back to their parents in the form of cards. The cards for the control group contained knowledge about healthy lifestyles, while those for the intervention group additionally included information on body mass index (BMI), BMI grouping, and BMI ranking. Overweight and obesity were determined according to the age- and gender-specific criteria in the Screening for Overweight and Obesity among School-aged Children and Adolescents. After a 9-month intervention period, the prevalence rates of overweight and obesity and lifestyle behavior data between the two groups before and after the intervention were compared by a generalized linear mixed model, in order to assess the effectiveness of the weight monitoring information feedback intervention.
Results:
The intervention group consisted of 368 students, including 208 boys (56.52%) and 160 girls (43.48%). The majority of students were 11 years, with 153 students accounting for 41.58%. The prevalence rate of overweight and obesity was 24.18%. The control group had 324 students, with 180 boys (55.56%) and 144 girls (44.44%). The predominant age was also 11 years, with 128 students accounting for 39.51%. The prevalence rate of overweight and obesity was 25.31%. Before the intervention, there were no statistically significant differences between the two groups in terms of gender, age, prevalence rate of overweight and obesity, eating habits, exercise situation, and sleep patterns (all P>0.05). After the intervention, there were significant interactions between group and time for the prevalence rate of overweight and obesity, the frequency of moderate-intensity exercise per week, and adequate sleep in the two groups (all P<0.05). The prevalence rate of overweight and obesity in the intervention group (OR=0.461, 95%CI: 0.252-0.845) was lower than that in the control group. The proportions of students in the intervention group who engaged in moderate-intensity exercise ≥4 times per week (OR=1.315, 95%CI: 1.033-1.675) and had adequate sleep (OR=1.402, 95%CI: 1.049-1.875) were higher than those in the control group.
Conclusion
Weight monitoring feedback can reduce the incidence of overweight and obesity among primary school students and has a certain improving effect on lifestyle behaviors such as exercise and sleep.
4.Structure-based development of potent and selective type-II kinase inhibitors of RIPK1.
Ying QIN ; Dekang LI ; Chunting QI ; Huaijiang XIANG ; Huyan MENG ; Jingli LIU ; Shaoqing ZHOU ; Xinyu GONG ; Ying LI ; Guifang XU ; Rui ZU ; Hang XIE ; Yechun XU ; Gang XU ; Zheng ZHANG ; Shi CHEN ; Lifeng PAN ; Ying LI ; Li TAN
Acta Pharmaceutica Sinica B 2024;14(1):319-334
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions as a key regulator in inflammation and cell death and is involved in mediating a variety of inflammatory or degenerative diseases. A number of allosteric RIPK1 inhibitors (RIPK1i) have been developed, and some of them have already advanced into clinical evaluation. Recently, selective RIPK1i that interact with both the allosteric pocket and the ATP-binding site of RIPK1 have started to emerge. Here, we report the rational development of a new series of type-II RIPK1i based on the rediscovery of a reported but mechanistically atypical RIPK3i. We also describe the structure-guided lead optimization of a potent, selective, and orally bioavailable RIPK1i, 62, which exhibits extraordinary efficacies in mouse models of acute or chronic inflammatory diseases. Collectively, 62 provides a useful tool for evaluating RIPK1 in animal disease models and a promising lead for further drug development.
5.Structure-activity Omics on Anti-inflammatory and Analgesic Effect of Cyperi Rhizoma in Qizhi Weitong Granules
Ying ZHENG ; Sicong LIU ; Xi LUO ; Bing QI ; Shuai WANG ; Yongrui BAO ; Tianjiao LI ; Liang WANG ; Dong YAO ; Xiansheng MENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(21):153-160
ObjectiveTo elucidate the pharmacodynamic substances responsible for the anti-inflammatory and analgesic effects of Cyperi Rhizoma by structure-activity omics. MethodOn the basis of the previous in vitro efficacy study by our research group, this study explored the in vivo efficacy of the flavonoids in Cyperi Rhizoma. The flavonoids in Cyperi Rhizoma and their targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), PharmMapper, Swiss TargetPrediction, and available articles. The targets of the anti-inflammatory and analgesic effects were collected from DisGeNET and Online Mendelian Inheritance in Man (OMIM). The common targets shared by flavonoids and the effects were selected as the direct targets of flavonoids endowing Cyperi Rhizoma with anti-inflammatory and analgesic effects, and protein-protein interaction (PPI) network of the core targets was constructed. The method of structure-activity omics was employed to correlate the structure and efficacy of one or more classes of chemical components in Cyperi Rhizoma with the targets as a bridge. The components were classified according to structure. Molecular docking of components to core targets was carried out via SYBYL-X 2.1.1, PyMol, and Discovery Studio 4.5 visualizer. Two targets with the highest binding affinity were selected to explore the relationship between compound structures and targets. ResultThe flavonoids in Cyperi Rhizoma exerted anti-inflammatory and analgesic effects on the mouse model of pain induced by formaldehyde. Eighteen components and 115 direct targets were screened out, and the core targets with high activities were protein kinase B1 (Akt1), interleukin-1β (IL-1β), cellular tumor antigen p53 (TP53), prostaglandin-endoperoxide synthase 2 (PTGS2), and matrix metalloproteinase-9 (MMP-9). According to the structures, the flavonoids in Cyperi Rhizoma were classified into bioflavonoids, flavonols, flavones, and flavanes. The molecular docking results showed that flavonoids of Cyperi Rhizoma had the highest binding affinity to TP53 and PTGS2. The results of structure-activity omics showed that bioflavonoids represented the best binding structure to the targets, while their polyhydroxyl etherification resulted in a significant decrease in the binding affinity to PTGS2. Glycosides had higher binding affinity to PTGS2. The introduction of the long-chain hydrocarbon group to the A ring of flavonols facilitated the binding to TP53, while the change of B ring substituents was not the main factor affecting the binding affinity. The 3,4-dihydroxyl flavane outperformed 3-hydroxyl flavane in the binding to TP53, while the two compounds showed similar binding affinity to PTGS2. ConclusionThe method of structure-activity omics was used to analyze the material basis for the anti-inflammatory and analgesic effects of flavonoids in Cyperi Rhizoma. Structure-activity omics provides new ideas for revealing the pharmacodynamic substances of traditional Chinese medicine.
6.Structure-activity Omics on Anti-inflammatory and Analgesic Effect of Paeoniae Radix Alba in Qizhi Weitong Granules
Bing QI ; Xi LUO ; Ying ZHENG ; Ying MENG ; Shuai WANG ; Yongrui BAO ; Tianjiao LI ; Ling HAN ; Xinying SHU ; Xiansheng MENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(21):169-175
ObjectiveTo elucidate the active compounds for the anti-inflammatory and analgesic effects of Paeoniae Radix Alba from structure-activity omics. MethodOn the basis of the previous in vitro efficacy study by our research group, a mouse model of foot swelling was induced by methyl aldehyde and used to study the anti-inflammatory and analgesic effects of total glycosides of Paeoniae Radix Alba in vivo. The core targets of the active compounds for the anti-inflammatory and analgesic effects of Paeoniae Radix Alba were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Online Mendelian Inheritance in Man (OMIM), and Search Tool for Recurring Instances of Neighbouring Genes (STRING). Molecular docking was conducted for the total glucosides of Paeoniae Radix Alba with the core targets, and the key core targets with high binding affinity were screened out according to the comprehensive score of each target and active structure. The structure-activity relationship was analyzed with targets as a bridge through the combination of compound structures and pharmacological effects. ResultThe total glucosides of Paeoniae Radix Alba had good anti-inflammatory and analgesic effects in vivo. The core targets of 23 active components of Paeoniae Radix Alba were epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), vascular endothelial growth factor A (VEGFA), cellular tumor antigen p53 (TP53), and proto-oncogene transcription factor (JUN). According to the structure of the parent nucleus, there were 16 pinane monoterpene glycosides, 4 pinene monoterpene glycosides, 2 monoterpene lactone glycosides, and 1 monoterpene ketone. The key core targets screened out by molecular docking were EGFR and STAT3. The structure-activity analysis of the active compound structures and the key core targets showed that the introduction of ketone group and benzene ring group on the parent nucleus affected the binding activity. ConclusionThis study analyzed the material basis for the anti-inflammatory and analgesic effects of total glycosides of Paeoniae Radix Alba from structure-activity omics, providing new ideas and methods for revealing the pharmacodynamic substances in traditional Chinese medicine.
7.Full-length transcriptome sequencing and bioinformatics analysis of Polygonatum kingianum
Qi MI ; Yan-li ZHAO ; Ping XU ; Meng-wen YU ; Xuan ZHANG ; Zhen-hua TU ; Chun-hua LI ; Guo-wei ZHENG ; Jia CHEN
Acta Pharmaceutica Sinica 2024;59(6):1864-1872
The purpose of this study was to enrich the genomic information and provide a basis for further development and utilization of
8.A new biphenyl lignan from Cornus officinalis
Meng YANG ; Zhi-you HAO ; Xiao-lan WANG ; Shi-qi ZHOU ; Chao-yuan XIAO ; Jun-yang ZHANG ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2024;59(6):1751-1756
Macroporous adsorption resin, MCI, Toyopearl HW-40C and silica gel column chromatography combined with the semi-preparative HPLC were used to isolate and purify the water extract of
9.A new furan α -butenolactones from Alisma orientale and their potential antifibrotic activities
Deng-hui ZHU ; Peng-li GUO ; Si-qi TAO ; Jing-ke ZHANG ; Meng-nan ZENG ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2024;59(7):2058-2061
Four furan
10.A new iridoid from Eucommia ulmoides
Shi-qi ZHOU ; Zhi-you HAO ; Meng YANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Bo-wen ZHANG ; Si-qi TAO ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2024;59(7):2062-2068
Eleven compounds were isolated from


Result Analysis
Print
Save
E-mail