1.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
2.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
3.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
4.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
5.Efficacy and dose-response relationships of antidepressants in the acute treatment of major depressive disorders: a systematic review and network meta-analysis.
Shuzhe ZHOU ; Pei LI ; Xiaozhen LYU ; Xuefeng LAI ; Zuoxiang LIU ; Junwen ZHOU ; Fengqi LIU ; Yiming TAO ; Meng ZHANG ; Xin YU ; Jingwei TIAN ; Feng SUN
Chinese Medical Journal 2025;138(12):1433-1438
BACKGROUND:
The optimal antidepressant dosages remain controversial. This study aimed to analyze the efficacy of antidepressants and characterize their dose-response relationships in the treatments of major depressive disorders (MDD).
METHODS:
We searched multiple databases, including the Embase, Cochrane Central Register of Controlled Trials, PubMed, and Web of Science, for the studies that were conducted between January 8, 2016, and April 30, 2023. The studies are double-blinded, randomized controlled trials (RCTs) involving the adults (≥18 years) with MDD. The primary outcomes were efficacy of antidepressant and the dose-response relationships. A frequentist network meta-analysis was conducted, treating participants with various dosages of the same antidepressant as a single therapy. We also implemented the model-based meta-analysis (MBMA) using a Bayesian method to explore the dose-response relationships.
RESULTS:
The network meta-analysis comprised 135,180 participants from 602 studies. All the antidepressants were more effective than the placebo; toludesvenlafaxine had the highest odds ratio (OR) of 4.52 (95% confidence interval [CI]: 2.65-7.72), and reboxetine had the lowest OR of 1.34 (95%CI: 1.14-1.57). Moreover, amitriptyline, clomipramine, and reboxetine showed a linear increase in effect size from low to high doses. The effect size of toludesvenlafaxine increased significantly up to 80 mg/day and subsequently maintained the maximal dose up to 160 mg/day while the predictive curves of nefazodone were fairly flat in different dosages.
CONCLUSIONS:
Although most antidepressants were more efficacious than placebo in treating MDD, no consistent dose-response relationship between any antidepressants was observed. For most antidepressants, the maximum efficacy was achieved at lower or middle prescribed doses, rather than at the upper limit.
REGISTRATION
No. CRD42023427480; https://www.crd.york.ac.uk/prospero/display_record.php?
Humans
;
Antidepressive Agents/therapeutic use*
;
Depressive Disorder, Major/drug therapy*
;
Dose-Response Relationship, Drug
;
Randomized Controlled Trials as Topic
6.Long-term efficacy of CMV/EBV bivirus-specific T cells for viral co-reactivation after stem cell transplantation.
Xuying PEI ; Meng LV ; Xiaodong MO ; Yuqian SUN ; Yuhong CHEN ; Chenhua YAN ; Yuanyuan ZHANG ; Lanping XU ; Yu WANG ; Xiaohui ZHANG ; Xiaojun HUANG ; Xiangyu ZHAO
Chinese Medical Journal 2025;138(5):607-609
7.Review of chemical constituents, pharmacological effects, and quality control status of Eucommiae Cortex and prediction of its Q-markers.
Meng-Fan PENG ; Bao-Song LIU ; Pei-Pei YAN ; Cai-Xia LI ; Xiao-Fang ZHANG ; Yi ZHENG ; Ya-Gang SONG ; Tong LIU ; Lei YANG ; Ming-San MIAO
China Journal of Chinese Materia Medica 2025;50(4):946-958
Eucommiae Cortex, the dried bark of Eucommia ulmoides( Eucommiaceae), has both medicinal and edible values.Modern research has shown that Eucommiae Cortex contains various components such as flavonoids, lignans, iridoids, phenolic acids,terpenoids, and steroids, which have anti-osteoporosis, antioxidant, anti-inflammatory, blood glucose-lowering, and gastrointestinal tract-protecting effects. Eucommiae Cortex has applications in multiple fields such as healthcare, industry, and animal husbandry,demonstrating broad development prospects. This article reviews the chemical constituents, pharmacological effects, and quality control status of Eucommiae Cortex. Furthermore, according to the concept of quality marker(Q-marker), this article predicts the Q-markers of Eucommiae Cortex from traditional medicinal properties, traditional medicinal effects, new medicinal effects, measurability of chemical components, compatibility, harvesting periods, and geographical origins. The components such as pinoresinol diglucoside,chlorogenic acid, caffeic acid, quercetin, baicalein, baicalin, olivil, coniferyl ferulate, and kaempferol can be used as Q-markers for Eucommiae Cortex, which provide reference for establishing a systematic quality control system for Eucommiae Cortex.
Eucommiaceae/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Quality Control
;
Humans
;
Animals
8.Analysis of gene expression in synovial fluid and blood of patients with knee osteoarthritis of Yang deficiency and blood stasis type.
Hao-Tian HUA ; Zhong-Yi ZHANG ; Zhao-Kai JIN ; Peng-Qiang LOU ; Zhuo MENG ; An-Qi ZHANG ; Yang ZHANG ; Pei-Jian TONG
China Journal of Orthopaedics and Traumatology 2025;38(8):792-799
OBJECTIVE:
To reveal the molecular basis of knee osteoarthritis (KOA) with Yang deficiency and blood stasis syndrome by analyzing the gene expression profiles in synovial fluid and blood of KOA patients with this syndrome.
METHODS:
A total of 80 KOA patients were recruited from October 2022 to June 2024, including 40 cases in the non-Yang deficiency and blood stasis group (27 males and 13 females), with an average age of (61.75±3.45) years old;and 40 cases in the Yang deficiency and blood stasis group (22 males and 18 females), with an average age of (62.00±2.76) years old. The levels of body mass index (BMI), high-density lipoprotein (HDL), low-density lipoprotein (LDL), fibrinogen, total cholesterol, and D-dimer were recorded and summarized. Blood and synovial fluid samples from patients were collected for gene expression profile microarray sequencing, and then PCR and immunohistochemistry were used for clinical verification on the patients' synovial fluid and cartilage samples.
RESULTS:
Logistic regression analysis showed that compared with KOA patients with non-Yang deficiency and blood stasis syndrome, those with Yang deficiency and blood stasis syndrome had increased BMI, LDL, fibrinogen, total cholesterol, and D-dimer, and decreased HDL, with a clear correlation between the two groups. There were 562 differential genes in the blood, among which 322 were up-regulated and 240 were down-regulated;755 differential genes were found in the synovial fluid, with 350 up-regulated and 405 down-regulated. KEGG signaling pathway analysis of synovial fluid revealed changes in lipid metabolism-related pathways, including cholesterol metabolism, fatty acid metabolism, and PPARG signaling pathway. Analysis of the involved differential genes identified 6 genes in synovial fluid that were closely related to lipid metabolism, namely LRP1, LPL, ACOT6, TM6SF2, DGKK, and PPARG. Subsequently, PCR and immunohistochemical verification were performed using synovial fluid and cartilage samples, and the results were consistent with those of microarray sequencing.
CONCLUSION
This study explores the clinical and genomic correlation between traditional Chinese medicine syndromes and knee osteoarthritis from the perspective of lipid metabolism, and proves that abnormal lipid metabolism is closely related to KOA with Yang deficiency and blood stasis syndrome from both clinical and basic aspects.
Humans
;
Male
;
Female
;
Middle Aged
;
Synovial Fluid/metabolism*
;
Osteoarthritis, Knee/metabolism*
;
Yang Deficiency/complications*
;
Aged
9.Study design and rationale of the TXL-CAP trial: a randomized, double-blind, placebo-controlled, multicenter clinical trial assessing the effect of Tongxinluo capsules on the stability of coronary atherosclerotic plaques.
Mei NI ; Yun TI ; Yan QI ; Meng ZHANG ; Dayue Darrel DUAN ; Chen YAO ; Zhen-Hua JIA ; Yun ZHANG ; Pei-Li BU
Journal of Geriatric Cardiology 2025;22(7):615-624
Recent clinical trials have demonstrated a protective effect in using traditional Chinese medicine Tongxinluo (TXL) capsule to treat atherosclerosis. However, clinical evidence of the effects of TXL treatment on coronary plaque vulnerability is unavailable. In response, we developed this study to investigate the hypothesis that on the basis of statin therapy, treatment with TXL capsule may stabilize coronary lesions in patients with acute coronary syndrome (ACS). The TXL-CAP study was an investigator-initiated, randomized, double-blind clinical trial conducted across 18 medical centers in China. Patients with ACS aging from 18 to 80 years old who had a non-intervened coronary target lesion with a fibrous cap thickness (FCT) < 100 μm and lipid arc > 90° as defined by optical coherence tomography (OCT) were recruited. A total of 220 patients who met the selection criteria but did not meet the exclusion criteria will be finally recruited and randomized to receive treatment with TXL (n = 110) or placebo (n = 110) for a duration of 12 months. The primary endpoint was the difference in the minimum FCT of the coronary target lesion between TXL and placebo groups at the end of the 12-month follow-up. Secondary endpoints included: (1) changes of the maximum lipid arc and length of the target plaque, and the percentage of lipid, fibrous, and calcified plaques at the end of the 12-month period; (2) the incidence of composite cardiovascular events and coronary revascularization within the 12 months; (3) changes in the grade and scores of the angina pectoris as assessed using the Canadian Cardiovascular Society (CCS) grading system and Seattle angina questionnaire (SAQ) score, respectively; and (4) changes in hs-CRP serum levels. The results of the TXL-CAP trial will provide additional clinical data for revealing whether TXL capsules stabilizes coronary vulnerable plaques in Chinese ACS patients.
10.Triptolide Ameliorates Collagen-Induced Arthritis and Bleomycin-Induced Pulmonary Fibrosis in Rats by Suppressing IGF1-Mediated Epithelial Mesenchymal Transition.
Pei-Pei LU ; Lan YAN ; Qi GENG ; Lin LIN ; Lu-Lu ZHANG ; Chang-Qi SHI ; Peng-Cheng ZHAO ; Xiao-Meng ZHANG ; Jian-Yu SHI ; Cheng LYU
Chinese journal of integrative medicine 2025;31(12):1069-1077
OBJECTIVE:
To investigate the common mechanisms among collagen-induced arthritis (CIA), bleomycin (BLM)-induced pulmonary fibrosis, and CIA+BLM to evaluate the therapeutic effect of triptolide (TP) on CIA+BLM.
METHODS:
Thirty-six male Sprague-Dawley rats were randomly assigned to 6 groups according to a random number table (n=6 per group): normal control (NC), CIA, BLM, combined CIA+BLM model, TP low-dose (TP-L, 0.0931 mg/kg), and TP high-dose (TP-H, 0.1862 mg/kg) groups. The CIA model was induced by intradermal injection at the base of the tail with emulsion of bovine type II collagen and incomplete Freund's adjuvant (1:1), with 200 µL administered on day 0 and a booster of 100 µL on day 7. Pulmonary fibrosis was induced via a single intratracheal injection of BLM (5 mg/kg). The CIA+BLM model combined both protocols, and TP was administered orally from day 14 to 35. After successful modeling, arthritis scores were recorded every 3 days, and pulmonary function was assessed once at the end of the treatment period. Lung tissues were collected for histological analysis (hematoxylin eosin and Masson staining), immunohistochemistry, measurement of hydroxyproline (HYP) content, and calculation of lung coefficient. In addition, HE staining was performed on the ankle joint. Total RNA was extracted from lung tissues for transcriptomic analysis. Differentially expressed genes (DEGs) were compared with those from the RA-associated interstitial lung diseases patient dataset GSE199152 to identify overlapping genes, which were then used to construct a protein-protein interaction network. Hub genes were identified using multiple topological algorithms.
RESULTS:
The successfully established CIA+BLM rat model exhibited significantly increased arthritis scores and severe pulmonary fibrosis (P<0.01). By intersecting the DEGs obtained from transcriptomic analysis of lung tissues in CIA, BLM, and CIA+BLM rats with DEGs from rheumatoid arthritis-interstitial lung disease patients (GSE199152 dataset), 50 upregulated and 44 downregulated genes were identified. Through integrated PPI network analysis using multiple topological algorithms, IGF1 was identified as a central hub gene. TP intervention significantly improved pulmonary function by increasing peak inspiratory flow (P<0.01), and reduced lung index and HYP content (P<0.01). Histopathological analysis showed that TP alleviated alveolar collapse, interstitial thickening, and collagen deposition in the lung tissues (P<0.01). Moreover, TP treatment reduced the expression of collagen type I and α-SMA and increased E-cadherin levels (P<0.01). TP also significantly reduced arthritis scores and ameliorated synovial inflammation (P<0.05). Both transcriptomic and immunohistochemical analyses confirmed that IGF1 expression was elevated in the CIA+BLM group and downregulated following TP treatment (P<0.05).
CONCLUSION
TP exerts protective effects in the CIA+BLM model by alleviating arthritis and pulmonary fibrosis through the inhibition of IGF1-mediated EMT.
Animals
;
Pulmonary Fibrosis/complications*
;
Bleomycin/adverse effects*
;
Phenanthrenes/pharmacology*
;
Male
;
Rats, Sprague-Dawley
;
Diterpenes/pharmacology*
;
Epoxy Compounds/therapeutic use*
;
Arthritis, Experimental/complications*
;
Insulin-Like Growth Factor I/metabolism*
;
Rats
;
Lung/physiopathology*

Result Analysis
Print
Save
E-mail