1.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
2.Exercise Regulates Structural Plasticity and Neurogenesis of Hippocampal Neurons and Improves Memory Impairment in High-fat Diet-induced Obese Mice
Meng-Si YAN ; Lin-Jie SHU ; Chao-Ge WANG ; Ran CHENG ; Lian-Wei MU ; Jing-Wen LIAO
Progress in Biochemistry and Biophysics 2025;52(4):995-1007
ObjectiveObesity has been identified as one of the most important risk factors for cognitive dysfunction. Physical exercise can ameliorate learning and memory deficits by reversing synaptic plasticity in the hippocampus and cortex in diseases such as Alzheimer’s disease. In this study, we aimed to determine whether 8 weeks of treadmill exercise could alleviate hippocampus-dependent memory impairment in high-fat diet-induced obese mice and investigate the potential mechanisms involved. MethodsA total of sixty 6-week-old male C57BL/6 mice, weighing between 20-30 g, were randomly assigned to 3 distinct groups, each consisting of 20 mice. The groups were designated as follows: control (CON), high-fat diet (HFD), and high-fat diet with exercise (HFD-Ex). Prior to the initiation of the treadmill exercise protocol, the HFD and HFD-Ex groups were fed a high-fat diet (60% fat by kcal) for 20 weeks. The mice in the HFD-Ex group underwent treadmill exercise at a speed of 8 m/min for the first 10 min, followed by 12 m/min for the subsequent 50 min, totally 60 min of exercise at a 0° slope, 5 d per week, for 8 weeks. We employed Y-maze and novel object recognition tests to assess hippocampus-dependent memory and utilized immunofluorescence, Western blot, Golgi staining, and ELISA to analyze axon length, dendritic complexity, number of spines, the expression of c-fos, doublecortin (DCX), postsynaptic density-95 (PSD95), synaptophysin (Syn), interleukin-1β (IL-1β), and the number of major histocompatibility complex II (MHC-II) positive cells. ResultsMice with HFD-induced obesity exhibit hippocampus-dependent memory impairment, and treadmill exercise can prevent memory decline in these mice. The expression of DCX was significantly decreased in the HFD-induced obese mice compared to the control group (P<0.001). Treadmill exercise increased the expression of c-fos (P<0.001) and DCX (P=0.001) in the hippocampus of the HFD-induced obese mice. The axon length (P<0.001), dendritic complexity (P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P<0.001) in the hippocampus were significantly decreased in the HFD-induced obese mice compared to the control group. Treadmill exercise increased the axon length (P=0.002), dendritic complexity(P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P=0.001) of the hippocampus in the HFD-induced obese mice. Our study found a significant increase in MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of HFD-induced obese mice compared to the control group. Treadmill exercise was found to reduce the number of MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of obese mice induced by a HFD. ConclusionTreadmill exercise led to enhanced neurogenesis and neuroplasticity by increasing the axon length, dendritic complexity, dendritic spine numbers, and the expression of PSD95 and DCX, decreasing the number of MHC-II positive cells and neuroinflammation in HFD-induced obese mice. Therefore, we speculate that exercise may serve as a non-pharmacologic method that protects against HFD-induced hippocampus-dependent memory dysfunction by enhancing neuroplasticity and neurogenesis in the hippocampus of obese mice.
3.Challenges in the study of self-assembled aggregates in decoction of traditional Chinese medicine: A preliminary review
Qi WANG ; Xiao-meng GUO ; Qian-kun NI ; Mei-jing LI ; Rui XU ; Xing-jie LIANG ; Mu-xin GONG
Acta Pharmaceutica Sinica 2024;59(1):94-104
Decoction is the most commonly used dosage form in the clinical treatment of traditional Chinese medicine (TCM). During boiling, the violent movement of various active ingredients in TCM creates molecular forces such as hydrogen bonding,
4.Immunomodulatory effect of astragaloside IV on T cells of experimental autoimmune encephalomyelitis mice
Bingtao MU ; Jingwen YU ; Chunyun LIU ; Minfang GUO ; Tao MENG ; Pengwei YANG ; Wenyue WEI ; Lijuan SONG ; Jiezhong YU ; Cungen MA
Chinese Journal of Tissue Engineering Research 2024;28(7):1057-1062
BACKGROUND:In the initial stage of multiple sclerosis,central immune cells activate and release a large number of inflammatory factors,causing white matter demyelination and even involving gray matter neurons.The equilibrium of differentiation between different subsets of CD4+ T cells plays an important role in the progression of experimental autoimmune encephalomyelitis.The previous results of the research group showed that the active ingredient astragalus glycoprotein in astragalus can regulate the immune response in experimental autoimmune encephalomyelitis mice,and whether it has a regulatory effect on the differentiation of T cell subsets has not been determined. OBJECTIVE:To explore the therapeutic effects and immune regulatory mechanisms of astragaloside IV on experimental autoimmune encephalomyelitis mice. METHODS:Female C57BL/6 mice were divided into the normal control group,experimental autoimmune encephalomyelitis disease model group,and astragaloside IV treatment group(n=8 per group).Myelin oligodendrocyte glycoprotein peptides 35-55 were used for experimental autoimmune encephalomyelitis model induction in the last two groups.On day 10 to 28 after immunization,the astragaloside IV treatment group was treated with 40 mg/kg per day astragaloside IV intragastrically.Body weight and clinical scores of mice in each group were recorded from the immunization day to the 28th day.On the 28th day after immunization,the mouse spinal cord was taken and made into frozen sections for hematoxylin-eosin staining and Lux fast blue staining to observe pathological changes in the spinal cord.Percentage of splenic T cell subsets was detected using flow cytometry.Western blot assay was used to determine the protein expression of interferon-γ,interleukin-17 and interleukin-6 in the spinal cord.Levels of interferon-γ,interleukin-17,interleukin-6 and interleukin-4 in supernatants of cultured splenocytes were determined by ELISA. RESULTS AND CONCLUSION:(1)Compared with the experimental autoimmune encephalomyelitis disease model group,astragaloside IV could reduce the degree of weight loss in experimental autoimmune encephalomyelitis mice(P<0.05),ameliorate clinical symptoms(P<0.05),inhibit the infiltration of inflammatory cells and alleviate myelin loss(P<0.01,P<0.05).(2)Compared with the experimental autoimmune encephalomyelitis disease model group,astragaloside IV could inhibit the proportion of CD4+T cell subsets expressing interferon-γ(P<0.001)and interleukin-17(P<0.001),but increase percentages of CD4+ interleukin-10+(P<0.001)and CD4+ transforming growth factor-β+(P<0.01)T cell subsets.(3)Astragaloside IV could inhibit the expression of interferon-γ(P<0.05,P<0.01),interleukin-17(P<0.05,P<0.05),and interleukin-6(P<0.05,P<0.05)in the spinal cord and spleen,and up-regulate the expression of interleukin-4(P<0.01)in spleen.(4)These findings confirm that astragaloside IV alleviates clinical symptoms in experimental autoimmune encephalomyelitis mice,which may be related to regulating the splenic T cell subsets,therefore,inhibiting the infiltration of inflammatory cells into the center and reducing the demyelination.
5.Rapid Screening of 34 Emerging Contaminants in Surface Water by UHPLC-Q-TOF-MS
Chen-Shan LÜ ; Yi-Xuan CAO ; Xiao-Xi MU ; Hai-Yan CUI ; Tao WANG ; Zhi-Wen WEI ; Ke-Ming YUN ; Meng HU
Journal of Forensic Medicine 2024;40(1):30-36
Objective To establish a rapid screening method for 34 emerging contaminants in surface water by ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS).Methods The pretreatment conditions of solid phase extraction(SPE)were op-timized by orthogonal experimental design and the surface water samples were concentrated and ex-tracted by Oasis? HLB and Oasis? MCX SPE columns in series.The extracts were separated by Kine-tex? EVO C18 column,with gradient elution of 0.1%formic acid aqueous solution and 0.1%formic acid methanol solution.Q-TOF-MS'fullscan'and'targeted MS/MS'modes were used to detect 34 emerging contaminants and to establish a database with 34 emerging contaminants precursor ion,prod-uct ion and retention times.Results The 34 emerging contaminants exhibited good linearity in the con-centration range respectively and the correlation coefficients(r)were higher than 0.97.The limit of de-tection was 0.2-10 ng/L and the recoveries were 81.2%-119.2%.The intra-day precision was 0.78%-18.70%.The method was applied to analyze multiple surface water samples and 6 emerging contaminants were detected,with a concentration range of 1.93-157.71 ng/L.Conclusion The method is simple and rapid for screening various emerging contaminants at the trace level in surface water.
6.Food Addiction and Its Neural Circuitry Regulation Mechanism
Lian-Wei MU ; Ya-Rong WANG ; Meng-Si YAN ; Lin-Jie SHU
Progress in Biochemistry and Biophysics 2024;51(4):881-889
Food addiction refers to the individual dependence on certain specific foods (high-calorie foods) to the extent that it becomes difficult to control and manifests a series of addictive-like behavioral changes. Food addiction is an important factor in the development of human obesity and is also a core factor that most people cannot maintain weight loss or adhere to restrictive diets to maintain a healthy weight. A deeper understanding of food addiction and its neurobiological mechanisms will provide accurate targets for intervening in food addiction to improve obesity. Food addiction is characterized by compulsive, chronic and repetitive nature. The Yale Food Addiction Scale (YFAS), a scale specifically designed to assess food addiction, was developed in 2009 by modeling all the DSM-IV for substance dependence to be applicable to eating behavior. In 2016, Gearhardt developed the Yale Food Addiction Scale 2.0, which contains 35 survey questions, to align the YFAS scale with the diagnostic criteria for addictive disorders in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders. One of the most valid and used animal models for food addiction is the mouse food self-administration model. The mouse food self-administration model was modified according to the rat cocaine addiction model, and the food addiction status of the animals was evaluated based on three behaviors: persistence of feeding response, feeding motivation, and compulsive feeding. Studies have shown that the neural circuits of the lateral hypothalamus-ventral tegmental area-nucleus accumbens and ventral tegmental area-prelimbic-nucleus accumbens are key neurobiological mechanisms that regulate food addiction. Dopaminergic neurons in the ventral tegmental area project to the nucleus accumbens (NAc) to facilitate food reinforcement, food reward, and food addiction. The corticotropin-releasing factor (CRF) secreted by the hypothalamus may mediate chronic stress-induced VTA-nucleus accumbens reward system dysfunction and promote food addiction in mice. Meanwhile, the nucleus accumbens receives glutamatergic projections from the prelimbic cortex, an integral part of the reward system. Specific inhibition of the PL-NAc neural circuit develops a food addiction-susceptible phenotype in mice. Furthermore, dopaminergic projections from the ventral tegmental area to the prelimbic cortex specifically inhibited the PL-NAc neural circuit to promote a food-addicted phenotype in mice. Additionally, neurotensin-positive neurons in the lateral septum (LSNts) project to the tuberal nucleus (TU) via GABA signaling to suppress hedonic feeding.
7.Astragaloside inhibits astrocyte activation and inflammatory response induced by inflammation
Jingwen YU ; Minfang GUO ; Bingxin ZHANG ; Bingtao MU ; Tao MENG ; Huiyu ZHANG ; Cungen MA ; Jinzhu YIN ; Lijuan SONG ; Jiezhong YU
Chinese Journal of Tissue Engineering Research 2024;28(31):5022-5028
BACKGROUND:Astrocytes play an important role in the pathology of central nervous system diseases.The phenotypic and functional changes in astrocytes suggest that it may be an effective therapeutic target for central nervous system diseases.Our previous studies have confirmed that astragaloside can inhibit the lipopolysaccharide-induced astrocyte inflammatory response.Whether astragaloside can regulate the phenotype and function of astrocytes through Notch-1 and its downstream signaling pathway remains unclear. OBJECTIVE:To explore the effect of astragaloside on astrocyte activation and inflammatory response induced by inflammation and its possible mechanism. METHODS:Cerebral cortex astrocytes derived from neonatal C57BL/6 mouse were cultured in vitro.CCK-8 assay was used to determine the optimum concentration of astragaloside and Notch active inhibitor DAPT.The astrocytes were divided into five groups:PBS group,lipopolysaccharide group,lipopolysaccharide + astragaloside group,lipopolysaccharide + DAPT group and lipopolysaccharide + DAPT + astragaloside group.The secretion level of inflammatory factors was detected by ELISA,and the level of nitric oxide was detected by Griess method.The astrocytes and splenic mononuclear cells were co-cultured in Transwell chamber to observe the migration of CD4T cells.The expression of astrocyte activation marker GFAP,A1 marker C3 and A2 marker S100A10 as well as Notch 1 and Jag-1 was detected by immunofluorescence staining.The expressions of CFB,C3,S100A10,PTX3,Notch-1,Jag-1,and Hes were detected by western blot assay. RESULTS AND CONCLUSION:(1)According to the results of CCK8 assay,the final concentration of astragaloside was selected as 25 μmol/L and the final concentration of DAPT was 50 μmol/L for follow-up experiments.(2)Compared with PBS group,interleukin-6,interleukin-12 and nitric oxide secretion levels in the lipopolysaccharide group were significantly increased(P<0.05,P<0.05,P<0.01).Compared with the lipopolysaccharide group,interleukin-6(all P<0.05),interleukin-12(P>0.05,P<0.05,P<0.05)and nitric oxide(P<0.05,P<0.01,P<0.01)secretion significantly reduced in the lipopolysaccharide + astragaloside group,lipopolysaccharide +DAPT group,lipopolysaccharide + DAPT + astragaloside group.(3)Compared with the PBS group,the expression of GFAP that is the marker of activated astrocytes and the migration of CD4 T cells were significantly increased in the lipopolysaccharide group(P<0.01).Compared with the lipopolysaccharide group,astrocyte activation was significantly inhibited and CD4 T cell migration was significantly reduced in the lipopolysaccharide + astragaloside,lipopolysaccharide +DAPT,lipopolysaccharide + DAPT + astragaloside group(P<0.05,P<0.05,P<0.01).(4)Compared with the PBS group,the expressions of A1 markers C3 and CFB in the lipopolysaccharide group were increased(P<0.01,P<0.05),and the expressions of A2 markers S100A10 and PTX3 were decreased(P<0.01,P<0.05).Compared with the lipopolysaccharide group,C3(all P<0.01)and CFB(both P<0.05)were significantly reduced and S100A10(all P<0.01)and PTX3(P<0.05,P<0.05 and P>0.05)were increased in the lipopolysaccharide + astragaloside,lipopolysaccharide +DAPT,lipopolysaccharide + DAPT + astragaloside group.(5)Compared with the PBS group,the expressions of Jag-1,Notch-1 and Hes in the lipopolysaccharide group were significantly increased(all P<0.01).Compared with the lipopolysaccharide group,the expressions of Jag-1(all P<0.01),Notch-1(all P<0.01)and Hes(P<0.05,P<0.01 and P<0.01)were significantly reduced in the lipopolysaccharide + astragaloside,lipopolysaccharide +DAPT,lipopolysaccharide + DAPT + astragaloside group.(6)The results indicate that astragaloside can promote the transformation of astrocytes from A1 to A2 by regulating Notch-1 signaling pathway,reduce the secretion of inflammatory factors and the migration of CD4 T cells,and thus inhibit astrocyte activation and inflammatory response.
8.Simultaneous detection of 34 emerging contaminants in tap water by HPLC-MS/MS and health risk assessment
Yixuan CAO ; Ziwei YUAN ; Xiaoxi MU ; Chenshan LV ; Haiyan CUI ; Tao WANG ; Zhiwen WEI ; Zhongbing CHEN ; Hongyan ZOU ; Keming YUN ; Meng HU
Chinese Journal of Forensic Medicine 2024;39(1):31-38
Objective To establish a simultaneous detection approach for 34 emerging contaminants(ECs)in tap water by liquid chromatography-tandem mass spectrometry(HPLC-MS/MS).Human health risk assessment was performed according to the detection results from 43 tap water samples.Methods Tap water samples were concentrated and extracted by solid phase extraction,and then blown to near dry by nitrogen at 40℃.The sample extracts were dissolved in methanol-water solution(95:5,VN)to 0.5 mL for analyzing.Agilent Jet Stream Electrospray Ionization(AJS ESI)and the multiple reaction monitoring(MRM)mode were performed for MS to acquire the data of 34 ECs.A database including precursor ion,product ion and retention times was established accordingly.Results The average linear correlation coefficients(r)of 34 kinds of ECs was 0.995 9.The limits of detection were 0.01~0.60 ng/L and the recoveries were between 60.7%and 119.8%.The intra-group precisions were between 0.05%~9.89%and the intra-day precisions were between 0.20%~14.40%for the spiked samples.The method was applied to analyze 43 tap water samples and a total of 15 ECs were detected.According to the results,the detection rate of caffeine was the highest(84%),and the concentration range was ND~74.42 ng/L.Among all the ECs detected,1,2,3-benzotriazole had the highest concentration(ND~361.15 ng/L),where detection rate was 44%.Humans may be exposed to these ECs by drinking the tap water.The human health risk assessments of 12 kinds of ECs were carried out,however,the estimated risk was negligible(risk quotient<0.01).Conclusion The method is simple,highly sensitive and selective,and could meet the detection needs of ECs at trace level in tap water.There was no human health risk posed for ECs identified in 43 tap water samples analyzed by this method.
9. Effects of metabolites of eicosapentaenoic acid on promoting transdifferentiation of pancreatic OL cells into pancreatic β cells
Chao-Feng XING ; Min-Yi TANG ; Qi-Hua XU ; Shuai WANG ; Zong-Meng ZHANG ; Zi-Jian ZHAO ; Yun-Pin MU ; Fang-Hong LI
Chinese Pharmacological Bulletin 2024;40(1):31-38
Aim To investigate the role of metabolites of eicosapentaenoic acid (EPA) in promoting the transdifferentiation of pancreatic α cells to β cells. Methods Male C57BL/6J mice were injected intraperitoneally with 60 mg/kg streptozocin (STZ) for five consecutive days to establish a type 1 diabetes (T1DM) mouse model. After two weeks, they were randomly divided into model groups and 97% EPA diet intervention group, 75% fish oil (50% EPA +25% DHA) diet intervention group, and random blood glucose was detected every week; after the model expired, the regeneration of pancreatic β cells in mouse pancreas was observed by immunofluorescence staining. The islets of mice (obtained by crossing GCG
10.Mortality, morbidity, and care practices for 1750 very low birth weight infants, 2016-2021
Yang HE ; Meng ZHANG ; Jun TANG ; Wanxiu LIU ; Yong HU ; Jing SHI ; Hua WANG ; Tao XIONG ; Li ZHANG ; Junjie YING ; Dezhi MU
Chinese Medical Journal 2024;137(20):2452-2460
Background::Very low birth weight (VLBW) infants are the key populations in neonatology, wherein morbidity and mortality remain major challenges. The study aimed to analyze the clinical characteristics of VLBW infants.Methods::A retrospective cohort study was conducted in West China Second Hospital between January 2016 and December 2021. Neonates with a birth weight of <1500 g were included. Mortality, care practices, and major morbidities were analyzed, and compared with those of previous 7 years (2009-2015).Results::Of the total 1750 VLBW, 1386 were infants born with birth weight between 1000-1499 g and 364 infants were born with weight below 1000 g; 42.9% (751/1750) required delivery room resuscitation; 53.9% (943/1750) received non-invasive ventilation only; 38.2% (669/1750) received invasive ventilation; 1517 VLBW infants received complete treatment. Among them, 60.1% (912/1517) of neonates had neonatal respiratory distress syndrome (NRDS), 28.7% (436/1517) had bronchopulmonary dysplasia (BPD), 22.0% (334/1517) had apnea, 11.1% (169/1517) had culture-confirmed sepsis, 8.4% (128/1517) had pulmonary hemorrhage, 7.6% (116/1517) had severe intraventricular hemorrhage (IVH)/periventricular leukomalacia (PVL), 5.7% (87/1517) had necrotizing enterocolitis (NEC), and 2.0% (31/1517) had severe retinopathy of prematurity. The total and in-hospital mortality rates were 9.7% (169/1750) and 3.0% (45/1517), respectively. The top three diagnoses of death among those who had received complete treatment were sepsis, NRDS, and NEC. In 2009-2015, 1146 VLBW were enrolled and 895 infants received complete treatment. The proportions of apnea, IVH, and IVH stage ≥3/PVL, were higher in 2009-2015 compared with those in 2016-2021, while the proportions of NRDS and BPD were characterized by significant increases in 2016-2021. The total and in-hospital mortality rates were 16.7% (191/1146) and 5.6% (50/895) respectively in 2009-2015.Conclusion::Among VLBW infants born in 2016-2021, the total and in-hospital mortality rates were lower than those of neonates born in 2009-2015. Incidences of NRDS and BPD increased in 2016-2021, which affected the survival rates and long-term prognosis of VLBW.

Result Analysis
Print
Save
E-mail