1.Staged Characteristics of Mitochondrial Energy Metabolism in Chronic Heart Failure with Heart-Yang Deficiency Syndrome and Prescription Intervention from Theory of Reinforcing Yang
Zizheng WU ; Xing CHEN ; Lichong MENG ; Yao ZHANG ; Peng LUO ; Jiahao YE ; Kun LIAN ; Siyuan HU ; Zhixi HU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):129-138
Chronic heart failure (CHF) is a complex clinical syndrome caused by ventricular dysfunction, with mitochondrial energy metabolism disorder being a critical factor in disease progression. Heart-Yang deficiency syndrome, as the core pathogenesis of CHF, persists throughout the disease course. Insufficiency of heart-Yang leads to weakened warming and propelling functions, resulting in the accumulation of phlegm-fluid, blood stasis, and dampness. This eventually causes Qi stagnation with phlegm obstruction and blood stasis with water retention, forming a vicious cycle that exacerbates disease progression. According to the theory of reinforcing Yang, the clinical experience of the traditional Chinese medicine (TCM) master Tang Zuxuan in treating CHF with heart-Yang deficiency syndrome, and achievements from molecular biological studies, this study innovatively proposes an integrated research framework of "TCM syndrome differentiation and staging-mitochondrial metabolism mechanisms-intervention with Yang-reinforcing prescriptions" which is characterized by the integration of traditional Chinese and Western medicine. Heart-Yang deficiency syndrome is classified into mild (Stage Ⅰ-Ⅱ), severe (Stage Ⅲ), and critical (Stage Ⅳ) stages. The study elucidates the precise correlations between the pathogenesis of each stage and mitochondrial metabolism disorders from theoretical, pathophysiological, and therapeutic perspectives. The mild stage is characterized by impaired biogenesis and substrate-utilization imbalance, corresponding to heart-Yang deficiency and phlegm-fluid aggregation. Linggui Zhugantang and similar prescriptions can significantly improve the expression of peroxisome proliferator-activated receptor gamma co-activator-1α(PGC-1α)/silent information regulator 2 homolog 1 (SIRT1) and ATPase activity. The severe stage centers on oxidative stress and structural damage, reflecting Yang deficiency with water overflow and phlegm-blood stasis intermingling. At this stage, Zhenwu Tang and Qiangxin Tang can effectively mitigate oxidative stress damage, increase adenosine triphosphate (ATP) content, and repair mitochondrial structure. The critical stage arises from calcium overload and mitochondrial disintegration, leading to the collapse of Yin-Yang equilibrium. At this stage, Yang-restoring and crisis-resolving prescriptions such as Fuling Sini Tang and Qili Qiangxin capsules can inhibit abnormal opening of the mitochondrial permeability transition pore (MPTP), reduce cardiomyocyte apoptosis rate, and protect mitochondrial function. By summarizing the characteristics of mitochondrial energy metabolism disorders at different stages of CHF, this study explores the application of the theory of reinforcing Yang in treating heart-Yang deficiency syndrome and provides new insights for the clinical diagnosis and treatment of CHF.
2.Traditional Chinese Medicine Treatment of Chronic Heart Failure Based on AMPK Signaling Pathway
Kun LIAN ; Lichong MENG ; Xueqin WANG ; Yubin ZHANG ; Lin LI ; Xuhui TANG ; Zhixi HU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):139-148
Chronic heart failure (CHF) is a group of complex clinical syndromes caused by abnormal changes in the structure and/or function of the heart due to various reasons, resulting in disorders of ventricular contraction and/or diastole. CHF is a condition where primary diseases such as coronary heart disease, hypertension and pulmonary heart disease recur frequently and persist for a long time, presenting blood stasis in meridians and collaterals, stagnation of water and dampness, and accumulation of Qi in collaterals. Its pathogenesis is complex and may involve myocardial energy metabolism disorders, oxidative stress responses, myocardial cell apoptosis, autophagy, inflammatory responses, etc. According to the theory of restraining hyperactivity to acquire harmony, we believe that under normal circumstances, the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway functions normally, maintaining human physiological activities and energy metabolism. Under pathological conditions, the AMPK signaling pathway is abnormal, causing energy metabolism disorders, inflammatory responses, and myocardial fibrosis. Traditional Chinese medicine (TCM) can regulate the AMPK signaling pathway through multiple mechanisms, targets, and effects, effectively curbing the occurrence and development of CHF. It has gradually become a research hotspot in the prevention and treatment of this disease. Guided by the theory of TCM, our research group, through literature review, summarized the relationship between the AMPK pathway and CHF and reviewed the research progress in the prevention and control of CHF with TCM active ingredients, TCM compound prescriptions, and Chinese patent medicines via regulating the AMPK pathway. The review aims to clarify the mechanism and targets of TCM in the treatment of CHF by regulating the AMPK pathway and guide the clinical treatment and drug development for CHF.
3.Danhong Injection Regulates Ventricular Remodeling in Rat Model of Chronic Heart Failure with Heart-Blood Stasis Syndrome via p38 MAPK/NF-κB Signaling Pathway
Zizheng WU ; Xing CHEN ; Jiahao YE ; Lichong MENG ; Yao ZHANG ; Junyu ZHANG ; Zhixi HU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):149-159
ObjectiveTo explore the mechanism of ventricular remodeling mediated by the p38 mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NF-κB) signaling pathway in the rat model of chronic heart failure (CHF) with heart-blood stasis syndrome, as well as the intervention effect of Danhong injection. MethodsIn vivo experiment: SPF-grade male SD rats were assigned via the random number table method into 4 groups: Sham operation, model, captopril (8.8 mg·kg-1), and Danhong injection (6.0 mL·kg-1). The model of CHF with heart-blood stasis syndrome was established by abdominal aortic constriction, and the sham operation group only underwent laparotomy without constriction. All the groups were treated continuously for 15 days. The tongue color of rats was observed. Echocardiography, hemorheology, heart mass index (HMI), and left ventricular mass index (LVMI) were measured. Hematoxylin-eosin (HE) staining and Masson staining were performed to observe the pathological and fibrotic changes of the myocardial tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to quantify the levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP), interleukin-6 (IL-6), angiotensin Ⅱ (AngⅡ), tumor necrosis factor-α (TNF-α), and Creactive protein (CRP) in the serum, as well as the levels of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) in the myocardial tissue. Western blot was used to quantify the protein levels of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65 in the myocardial tissue. In vitro experiment: H9C2 cardiomyocytes were treated with 1×10-6 mol·L-1 AngⅡ to establish a model of myocardial hypertrophy. H9C2 cardiomyocytes were allocated into normal, model, inhibitor + Danhong injection, Danhong injection (20 mL·L-1), and inhibitor (SB203580, 5 μmol·L-1) groups. CCK-8 assay was used to detect the viability of H9C2 cardiomyocytes. Rhodamine-labeled phalloidin staining was used to reveal the area of cardiomyocytes. Real-time PCR was performed to determine the mRNA levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). Western blot was used to assess the protein levels of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65. ResultsIn vivo experiment: Compared with the sham operation group, the model group showed purplish-dark tongue with decreased R, G, B values of the tongue surface (P<0.01), increased whole blood viscosity (at low, medium, and high shear rates) (P<0.01), decreased left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) (P<0.01), increased left ventricular end-diastolic diameter (LVIDd), left ventricular end-systolic diameter (LVIDs), and left ventricular posterior wall thickness at end-diastole (LVPWd) (P<0.01), raised LVMI and HMI (P<0.01), and elevated levels of NT-proBNP, TNF-α, IL-6, and CRP in the serum and MMP-2 and MMP-9 in the myocardial tissue (P<0.01). The HE and Masson staining of the myocardial tissue showed compensatory myocardial hypertrophy, fibrosis, and massive inflammatory cell infiltration in the model group. Additionally, the model group presented up-regulated protein levels of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65 in the myocardial tissue (P<0.01). Compared with the model group, each administration group showed increased R, G, B values of the tongue surface (P<0.05, P<0.01), decreased whole blood viscosity (at low, medium, and high shear rates) (P<0.05, P<0.01), increased LVEF and LVFS (P<0.01), decreased LVIDd, LVIDs, and LVPWd (P<0.05, P<0.01), declined LVMI and HMI (P<0.05, P<0.01), and lowered levels of NT-proBNP, TNF-α, IL-6, and CRP in the serum and MMP-2 and MMP-9 in the myocardial tissue (P<0.01). HE and Masson staining showed alleviated compensatory myocardial hypertrophy, reduced fibrosis, and decreased expression of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65 in the myocardial tissue (P<0.01). In vitro experiment: When the concentration of Danhong injection reached 20 mL·L-1, the survival rate of H9C2 cardiomyocytes was the highest (P<0.01). Compared with the normal group, the model group showed up-regulated mRNA levels of ANP and BNP (P<0.01), increased relative cell surface area (P<0.01), and raised protein levels of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65 (P<0.01). Compared with the model group, each administration group showed down-regulated mRNA levels of ANP and BNP (P<0.01), reduced relative cell surface area (P<0.05, P<0.01), and down-regulated protein levels of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65 (P<0.05, P<0.01). ConclusionDanhong injection can regulate ventricular remodeling through the p38 MAPK/NF-κB pathway, thereby exerting a protective effect on the rat model of CHF with heart-blood stasis syndrome.
4.Diagnosis and Treatment of Chronic Heart Failure Based on Thinking of Five Differentiation
Kun LIAN ; Lichong MENG ; Manting YI ; Lin LI ; Fei WANG ; Siyuan HU ; Zhixi HU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):160-168
Chronic heart failure (CHF) refers to a clinical syndrome in which the function or structure of the heart is changed due to damage to the original myocardium, resulting in reduced pumping and/or filling functions of the heart. In recent years, the mechanisms, pathways, and targets of traditional Chinese medicine (TCM) in the treatment of CHF have been continuously confirmed, and the application of TCM theories in guiding the syndrome differentiation and precise treatment of CHF is currently a research hotspot. On the basis of the syndrome differentiation and treatment in TCM, Professor LI Candong innovatively proposed the thinking of five differentiation: Disease differentiation, syndrome differentiation, pathogenesis differentiation, symptom differentiation, and individual differentiation. This article explores the clinical diagnosis and treatment of CHF from this thinking, emphasizing comprehensive syndrome differentiation, objective analysis, dynamic assessment, and individualized treatment. In terms of diagnosis, the first is to identify the disease name, cause, location, severity, and type of CHF, determine the type and its evolution, and clarify the process of transmission and transformation between deficiency and excess. Secondly, it is necessary to distinguish the authenticity, severity, primary and secondary, urgency and complexity of CHF syndromes, providing scientific guidance for syndrome differentiation and treatment. Thirdly, according to the symptoms and the principles of deficiency and excess, the physician should identify the core pathogenesis of CHF from the perspectives of Qi, blood, Yin, Yang, deficiency, stasis, phlegm, water, and toxins. Fourthly, from the macro, meso and micro levels, the physician should carefully distinguish the presence or absence, severity, authenticity, and completeness of the symptoms to guide the diagnosis and treatment process of CHF. Finally, personalized medication for CHF should be promoted based on the patient's gender, age, constitution, and living habits. In terms of treatment, based on the thinking of five differentiation, we propose that the treatment of CHF should integrate the disease and syndrome, clarify the pathogenesis, and apply precise treatment. The treatment should be people-oriented, staged, and typed, and the medication should be adjusted according to symptoms. This diagnostic and therapeutic approach is based on the holistic concept and syndrome differentiation and treatment, and combines the three causes for appropriate treatment, providing new ideas and insights for the diagnosis and treatment of CHF.
5.Age-related variations in the oral microbiome revealed by a large population-based study from National Health and Nutrition Examination Survey
CHEN Ming ; ZHONG Kaiyu ; HU Hongying ; YOU Meng
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(2):156-167
Objective:
To explore the characteristics of the diversity and composition of oral microbial flora with age, and to provide a reference for understanding the succession of oral microecology at different ages.
Methods:
Oral rinse 16S rRNA (V4 region) sequencing data from 9 021 participants 14-69 years of age in the 2009-2012 National Health and Nutrition Examination Survey (NHANES) were analyzed. Alpha diversity (Observed OTUs, Faith’s PD, Shannon Index), beta diversity (Bray-Curtis and UniFrac), and genus-level composition were examined using weighted generalized linear models (GLMs), including quadratic terms for age and adjusting for key covariates (gender, race/ethnicity, BMI, smoking status, and periodontitis severity).
Results:
Alpha diversity demonstrated a clear inverted U-shaped trajectory across age, peaking at 25-30 years old and declining thereafter. This trend remained consistent across sex, race, smoking, and periodontal health strata. Beta diversity analyses revealed a modest but steady age-related shift in community structure. Genus-level analyses revealed that Rothia, Prevotella_6, and Lactobacillus increased steadily with age, while Haemophilus, Porphyromonas, and Corynebacterium declined significantly. Notably, potential periodontopathogens, such as Fusobacterium and Treponema_2, peaked in early adulthood before declining with age.
Conclusion
Age is an important driver of oral microbial succession, and the oral microbiome exhibits dynamic changes across different life stages. Future longitudinal and multi-omic studies are warranted to elucidate the mechanisms underlying these age-related trajectories.
6.Protective effect of Shenfu injection against neonatal hypoxic-ischemic brain injury by inhibiting the ferroptosis
Xiaotong Zhang ; Meng Zhang ; Gang Li ; Yang Hu ; Yajing Xun ; Hui Ding ; Donglin Shen ; Ming Wu
Acta Universitatis Medicinalis Anhui 2025;60(1):31-40
Objective :
To observe the brain tissue injury during hypoxia-ischemia, as well as the pathological changes and the expression of ferroptosis-related factors after the use of Shenfu injection(SFI), and to explore the protective effect of SFI on hypoxic-ischemic brain injury(HIBD) by inhibiting ferroptosis.
Methods :
An animal model of HIBD in SD rats was constructed and intervened with SFI. Pathologic changes in brain tissue were observed by HE staining methods. Nissen staining was used to observe neuron survival. Glutathione Peroxidase 4(GPX4) and Divalent Metal Transporter 1(DMT1) expression were detected in brain tissue by Western blot, immunohistochemistry and immunofluorescence. Reduced Glutathione(GSH), Lactate Dehydrogenase(LDH), Malondialdehyde(MDA), Superoxide Dismutase(SOD) and tissue iron content were determined with the kits. BV-2 microglial cell line(BV2) cells were culturedin vitroand divided into control group(Ctrl group), oxygen-glucose deprivation group(OGD group), iron ferroptosis-inducing group(Erastin group), iron ferroptosis-inhibiting group(Fer-1 group), Shenfu injection group(SFI group), and Erastin+Shenfu injection group(Erastin+SFI group). 2′,7′-Dichlorodihydrofluorescein diacetate(DCFH-DA) reactive oxygen species(ROS) fluorescent probe was used to detect the ROS release level; Immunofluorescence was used to observe intracellular GPX4, DMT1 expression.
Results :
Compared with the Sham group, rats in the HIBD group showed significant neuronal cell damage in brain tissue, decreased GPX4 expression(P<0.01), increased DMT1 expression(P<0.01), decreased GSH and SOD levels(P<0.01), and increased LDH, MDA and tissue iron levels(P<0.05,P<0.05,P<0.01). In contrast, after the intervention of SFI, GPX4 expression was elevated(P<0.01), DMT1 expression decreased(P<0.01), GSH and SOD levels were elevated(P<0.01), and LDH, MDA, and tissue iron levels decreased(P<0.05,P<0.05,P<0.01). The cells experiments showed that compared with the Ctrl group, the OGD group had a significantly higher ROS content and a decrease in the expression of GPX4 fluorescence intensity, and an increase in the fluorescence intensity of DMT1(P<0.01), compared with the OGD group, the ROS content was reduced in the SFI group, while the expression of GPX4 was elevated and the expression of DMT1 was reduced(P<0.01).
Conclusion
Hippocampal and cortical regions are severely damaged after HIBD in neonatal rats, and their brain tissues show decreased expression of GPX4 and increased expression of DMT1. The above suggests that ferroptosis is involved in HIBD brain injury in neonatal rats. In contrast, Shenfu injection has a protective effect on HIBD experimental animal model and BV2 cell injury model by reducing iron aggregation and ROS production.
7.Syndrome Differentiation and Treatment of Atrial Fibrillation based on the Holistic View of "Spleen-Vessels-Heart-Spirit"
Yihang DU ; Chenglin DUAN ; Xueping ZHU ; Meng LYU ; Jiafan CHEN ; Yi WEI ; Yuanhui HU
Journal of Traditional Chinese Medicine 2025;66(1):89-92
Based on the holistic view of "spleen-vessels-heart-spirit" system, this article explores the pathogenesis and progression of atrial fibrillation. It is proposed that the onset of atrial fibrillation is due to failure of the spleen to transport and disharmony of blood vessels; phlegm and blood stasis obstructing the collaterals and damage to the heart structure are the basis of its pathogenesis; the unclear mind and disorder of body and spirit are the causes of its progression. Based on the characteristics of pathological changes in different stages of the disease, it is proposed that early treatment should focus on restoring the middle jiao, clearing and promoting blood vessels, using modified Yigong Powder (异功散); during the progression of the disease, treatment should remove blood stasis and phlegm, nourish heart and protect the pulse, using self-prescribed modified Mengshi Tongmai Decoction (礞石通脉汤); meanwhile, calming mind and stabilizing palpitations, and regulating spirit should be sequentially incorporated, with self-prescribed Jiazao Ningmai Decoction (甲枣宁脉汤) or Shenying Dingji Decoction (参英定悸汤) and modified as appropriate. Clinical treatment should focus on the whole disease course of atrial fibrillation, implementing stage-based treatments to enable early intervention and holistic regulation.
8.New progress in the diagnosis and treatment of acute kidney injury after lung transplantation
Murong HUANG ; Meng SUI ; Chunlan HU ; Shixiao TANG ; Chunxiao HU
Organ Transplantation 2025;16(2):322-328
Lung transplantation is the only effective treatment for end-stage lung disease. Acute kidney injury is a common complication after lung transplantation, which is related to the occurrence of chronic kidney disease and increased postoperative fatality. The factors and mechanisms affecting the occurrence of acute kidney injury are very complex. Clinically, it has been found that various risk factors during the perioperative period of lung transplantation may lead to the occurrence of acute kidney injury, including preoperative, intraoperative and postoperative factors. Early diagnosis of acute kidney injury after lung transplantation and timely intervention are of great significance to improving patient prognosis. Therefore, this article reviews the definition of acute kidney injury, non-invasive assessment, risk factors, prognosis, and clinical management of acute kidney injury after lung transplantation, aiming to provide a reference for the diagnosis and treatment of acute kidney injury after lung transplantation in clinical practice and to improve the survival rate of lung transplant recipients.
9.Hei Xiaoyaosan Improves Learning and Memory Abilities in Alzheimer's Disease Rats by Regulating Cell Apoptosis
Huping WANG ; Jiao YANG ; Yiqin CHEN ; Zhipeng MENG ; Yujie LYU ; Yunyun HU ; Wenli PEI ; Yumei HAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):108-115
ObjectiveTo explore the mechanism of Hei Xiaoyaosan in improving the cognitive function in Alzheimer's disease (AD) from cell apoptosis mediated by the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/nuclear factor kappa B (NF-κB) signaling pathway. MethodsFour-month-old SD male rats were randomly assigned into a blank group, a sham group, a model group, a donepezil hydrochloride (0.45 mg·kg-1) group, and high-, medium-, and low-dose (15.30, 7.65, and 3.82 g·kg-1, respectively) Hei Xiaoyaosan groups, with 10 rats in each group. The sham group received bilateral hippocampal injection of 1 μL normal saline, while the other groups received bilateral hippocampal injection of 1 μL beta-amyloid 1-42 (Aβ1-42) solution for the modeling of AD. Rats were administrated with corresponding agents once a day for 42 consecutive days. The Morris water maze test was carried out to assess the learning and memory abilities of rats. Hematoxylin-eosin staining was employed to observe pathological changes in the hippocampus of rats. Enzyme-linked immunosorbent assay was employed to measure the levels of cysteinyl aspartate-specific proteinase-3 (Caspase-3), B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax). Western blot was employed to determine the protein levels of PI3K, Akt, and NF-κB. A cell model of AD was established by co-culturing Aβ1-42 and PC12 cells in vitro. Cell viability and apoptosis were detected by the cell-counting kit 8 (CCK-8) assay and flow cytometry (FC), respectively. ResultsAnimal experiments showed that compared with the blank group, the model group had a prolonged escape latency (P<0.01), a reduced number of crossing platforms (P<0.01), disarrangement and a reduced number of hippocampal neurons, up-regulated expression of Bax and Caspase-3, down-regulated expression of Bcl-2 (P<0.01), decreased p-PI3K/PI3K and p-Akt/Akt levels, and an increased p-NF-κB/NF-κB level (P<0.01). Compared with the model group, donepezil hydrochloride and high- and medium-dose Hei Xiaoyaosan shortened the escape latency and increased the number of crossing platforms (P<0.05, P<0.01), improved the arrangement and increased the number of hippocampal neurons, down-regulated the expression levels of Bax and Caspase-3, up-reguated the expression level of Bcl-2 (P<0.05, P<0.01), increased the p-PI3K/PI3K and p-Akt/Akt levels (P<0.05, P<0.01), and reduced the p-NF-κB/NF-κB level (P<0.05, P<0.01). Cell experiments showed that compared with the blank group, the model group exhibited an increased apoptosis rate (P<0.01). Compared with the model group, the serum containing Hei Xiaoyaosan at various doses improved the cell viability (P<0.01), and the serum containing Hei Xiaoyaosan at the high dose decreased the cell apoptosis (P<0.01). ConclusionHei Xiaoyaosan may improve the learning and memory abilities of AD model rats by regulating cell apoptosis, while increasing the vitality and reducing the apoptosis rate of AD model cells via the PI3K/Akt/NF-κB signaling pathway.
10.Effect of Hei Xiaoyaosan on Neuroinflammation and NLRP3/Caspase-1/GSDMD Signaling Pathway in APP/PS1 Mice
Jun ZHOU ; Mingcheng LI ; Yujie LYU ; Zhipeng MENG ; Yunyun HU ; Huping WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):124-133
ObjectiveTo observe the effects of Hei Xiaoyaosan on the learning and memory abilities of Alzheimer's disease model mice (APP/PS1 mice), and to explore its mechanism through the inflammatory cascade mediated by nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3)/cysteine aspartate-specific protease (Caspase-1)/gasdermin D (GSDMD) signaling pathway. MethodsSPF-grade 4-month-old APP/PS1 mice were randomly divided into the model group, MCC950 group, and Hei Xiaoyaosan high-, medium-, and low-dose groups. C57BL/6J mice were used as the blank group. After 7 days of adaptive feeding, mice in each group were intervened. The Hei Xiaoyaosan high-, medium-, and low-dose groups were given corresponding doses by gavage (25.79, 12.90, 6.45 g·kg-1·d-1), the MCC950 group was intraperitoneally injected with 10 mg·kg-1·2 d-1, and the blank group received the same volume of physiological saline by gavage. After 90 days of intervention, the learning and memory abilities were assessed using the Y maze and Morris water maze tests. The structural changes of hippocampal neurons were observed by hematoxylin-eosin (HE) staining. The expression of amyloid precursor protein (APP) in the hippocampal CA3 region was detected by immunohistochemistry. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of interleukin (IL)-10, IL-18, and IL-1β in the hippocampus. Western blot was applied to detect the protein expression of NLRP3, Caspase-1, GSDMD, and GSDMD-N in the hippocampus. Immunofluorescence was used to detect the co-localization of GSDMD-N and ionized calcium-binding adapter molecule-1 (Iba-1) in the hippocampus. Results① In the Y maze test, compared with the blank group, the spontaneous alternation rate of the model group was significantly reduced (P<0.01). Compared with the model group, the spontaneous alternation rate in the Hei Xiaoyaosan high- and low-dose groups was significantly increased (P<0.01). ② In the Morris water maze test, during the 1-4 days of the location navigation test, the escape latency time of mice decreased with the extension of training time. On day 4, compared with the blank group, the model group showed a significantly increased escape latency (P<0.05). Compared with the model group, the MCC950 group and the Hei Xiaoyaosan low-dose group showed significantly reduced escape latency (P<0.05). In the spatial exploration experiment, compared with the blank group, the number of platform crossings in the model group was significantly reduced (P<0.01). Compared with the model group, the Hei Xiaoyaosan low-dose group showed significantly increased platform crossings (P<0.05). ③ HE staining showed that, compared with the blank group, the hippocampal CA3 cells of the model group were damaged, arranged loosely and irregularly, swollen, with unclear boundaries, and the nuclei were pyknotic and deeply stained. MCC950 and all doses of Hei Xiaoyaosan improved the hippocampal CA3 cell damage in APP/PS1 mice to varying degrees. ④ Immunohistochemical results indicated that, compared with the blank group, the expression of APP in the hippocampal CA3 region was significantly increased in the model group (P<0.01). MCC950 and all doses of Hei Xiaoyaosan could reduce the expression of APP in the hippocampal CA3 region of APP/PS1 mice (P<0.01). ⑤ ELISA results showed that the levels of IL-18 and IL-1β in the hippocampus of mice in the model group were significantly increased, and IL-10 levels were significantly reduced (P<0.01). Compared with the model group, the IL-18 levels in the MCC950 group and the Hei Xiaoyaosan medium- and low-dose groups were significantly reduced (P<0.01). IL-1β levels in the hippocampus of the MCC950 group and Hei Xiaoyaosan high-, medium-, and low-dose groups were significantly decreased (P<0.01). The IL-10 levels in the hippocampus of the MCC950 group and the Hei Xiaoyaosan medium- and low-dose groups were increased (P<0.05, P<0.01). ⑥ Western blot results showed that compared with the blank group, the protein levels of NLRP3, Caspase-1, GSDMD, and GSDMD-N in the hippocampus of the model group were significantly elevated (P<0.01). Compared with the model group, the content of NLRP3 and Caspase-1 in the hippocampus of the treated groups was decreased (P<0.05, P<0.01). The content of GSDMD in the hippocampus of the Hei Xiaoyaosan high-, medium-, and low-dose groups was reduced (P<0.05, P<0.01), and the content of GSDMD-N in the hippocampus of the Hei Xiaoyaosan medium- and low-dose groups was decreased (P<0.05, P<0.01). ⑦ Immunofluorescence results showed that, compared with the blank group, the co-expression of GSDMD-N and Iba-1 in the hippocampus of the model group was significantly increased (P<0.01). Compared with the model group, the co-expression of GSDMD-N and Iba-1 in the treated groups was significantly reduced (P<0.01). ConclusionHei Xiaoyaosan may regulate the NLRP3/Caspase-1/GSDMD signaling pathway to affect the release of inflammatory factors, alleviate neuroinflammation,improve hippocampal histopathological changes,and improve learning and memory deficits,thus providing potential therapeutic benefits for Alzheimer's disease.


Result Analysis
Print
Save
E-mail