1.Expert consensus on apical microsurgery.
Hanguo WANG ; Xin XU ; Zhuan BIAN ; Jingping LIANG ; Zhi CHEN ; Benxiang HOU ; Lihong QIU ; Wenxia CHEN ; Xi WEI ; Kaijin HU ; Qintao WANG ; Zuhua WANG ; Jiyao LI ; Dingming HUANG ; Xiaoyan WANG ; Zhengwei HUANG ; Liuyan MENG ; Chen ZHANG ; Fangfang XIE ; Di YANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Shuang PAN ; Deqin YANG ; Weidong NIU ; Qi ZHANG ; Shuli DENG ; Jingzhi MA ; Xiuping MENG ; Jian YANG ; Jiayuan WU ; Yi DU ; Junqi LING ; Lin YUE ; Xuedong ZHOU ; Qing YU
International Journal of Oral Science 2025;17(1):2-2
Apical microsurgery is accurate and minimally invasive, produces few complications, and has a success rate of more than 90%. However, due to the lack of awareness and understanding of apical microsurgery by dental general practitioners and even endodontists, many clinical problems remain to be overcome. The consensus has gathered well-known domestic experts to hold a series of special discussions and reached the consensus. This document specifies the indications, contraindications, preoperative preparations, operational procedures, complication prevention measures, and efficacy evaluation of apical microsurgery and is applicable to dentists who perform apical microsurgery after systematic training.
Microsurgery/standards*
;
Humans
;
Apicoectomy
;
Contraindications, Procedure
;
Tooth Apex/diagnostic imaging*
;
Postoperative Complications/prevention & control*
;
Consensus
;
Treatment Outcome
2.Expert consensus on pulpotomy in the management of mature permanent teeth with pulpitis.
Lu ZHANG ; Chen LIN ; Zhuo CHEN ; Lin YUE ; Qing YU ; Benxiang HOU ; Junqi LING ; Jingping LIANG ; Xi WEI ; Wenxia CHEN ; Lihong QIU ; Jiyao LI ; Yumei NIU ; Zhengmei LIN ; Lei CHENG ; Wenxi HE ; Xiaoyan WANG ; Dingming HUANG ; Zhengwei HUANG ; Weidong NIU ; Qi ZHANG ; Chen ZHANG ; Deqin YANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Jingzhi MA ; Shuli DENG ; Xiaoli XIE ; Xiuping MENG ; Jian YANG ; Xuedong ZHOU ; Zhi CHEN
International Journal of Oral Science 2025;17(1):4-4
Pulpotomy, which belongs to vital pulp therapy, has become a strategy for managing pulpitis in recent decades. This minimally invasive treatment reflects the recognition of preserving healthy dental pulp and optimizing long-term patient-centered outcomes. Pulpotomy is categorized into partial pulpotomy (PP), the removal of a partial segment of the coronal pulp tissue, and full pulpotomy (FP), the removal of whole coronal pulp, which is followed by applying the biomaterials onto the remaining pulp tissue and ultimately restoring the tooth. Procedural decisions for the amount of pulp tissue removal or retention depend on the diagnostic of pulp vitality, the overall treatment plan, the patient's general health status, and pulp inflammation reassessment during operation. This statement represents the consensus of an expert committee convened by the Society of Cariology and Endodontics, Chinese Stomatological Association. It addresses the current evidence to support the application of pulpotomy as a potential alternative to root canal treatment (RCT) on mature permanent teeth with pulpitis from a biological basis, the development of capping biomaterial, and the diagnostic considerations to evidence-based medicine. This expert statement intends to provide a clinical protocol of pulpotomy, which facilitates practitioners in choosing the optimal procedure and increasing their confidence in this rapidly evolving field.
Humans
;
Calcium Compounds/therapeutic use*
;
Consensus
;
Dental Pulp
;
Dentition, Permanent
;
Oxides/therapeutic use*
;
Pulpitis/therapy*
;
Pulpotomy/standards*
3.Expert consensus on intentional tooth replantation.
Zhengmei LIN ; Dingming HUANG ; Shuheng HUANG ; Zhi CHEN ; Qing YU ; Benxiang HOU ; Lihong QIU ; Wenxia CHEN ; Jiyao LI ; Xiaoyan WANG ; Zhengwei HUANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Shuang PAN ; Deqin YANG ; Weidong NIU ; Qi ZHANG ; Shuli DENG ; Jingzhi MA ; Xiuping MENG ; Jian YANG ; Jiayuan WU ; Lan ZHANG ; Jin ZHANG ; Xiaoli XIE ; Jinpu CHU ; Kehua QUE ; Xuejun GE ; Xiaojing HUANG ; Zhe MA ; Lin YUE ; Xuedong ZHOU ; Junqi LING
International Journal of Oral Science 2025;17(1):16-16
Intentional tooth replantation (ITR) is an advanced treatment modality and the procedure of last resort for preserving teeth with inaccessible endodontic or resorptive lesions. ITR is defined as the deliberate extraction of a tooth; evaluation of the root surface, endodontic manipulation, and repair; and placement of the tooth back into its original socket. Case reports, case series, cohort studies, and randomized controlled trials have demonstrated the efficacy of ITR in the retention of natural teeth that are untreatable or difficult to manage with root canal treatment or endodontic microsurgery. However, variations in clinical protocols for ITR exist due to the empirical nature of the original protocols and rapid advancements in the field of oral biology and dental materials. This heterogeneity in protocols may cause confusion among dental practitioners; therefore, guidelines and considerations for ITR should be explicated. This expert consensus discusses the biological foundation of ITR, the available clinical protocols and current status of ITR in treating teeth with refractory apical periodontitis or anatomical aberration, and the main complications of this treatment, aiming to refine the clinical management of ITR in accordance with the progress of basic research and clinical studies; the findings suggest that ITR may become a more consistent evidence-based option in dental treatment.
Humans
;
Tooth Replantation/methods*
;
Consensus
;
Periapical Periodontitis/surgery*
4.Expert consensus on management of instrument separation in root canal therapy.
Yi FAN ; Yuan GAO ; Xiangzhu WANG ; Bing FAN ; Zhi CHEN ; Qing YU ; Ming XUE ; Xiaoyan WANG ; Zhengwei HUANG ; Deqin YANG ; Zhengmei LIN ; Yihuai PAN ; Jin ZHAO ; Jinhua YU ; Zhuo CHEN ; Sijing XIE ; He YUAN ; Kehua QUE ; Shuang PAN ; Xiaojing HUANG ; Jun LUO ; Xiuping MENG ; Jin ZHANG ; Yi DU ; Lei ZHANG ; Hong LI ; Wenxia CHEN ; Jiayuan WU ; Xin XU ; Jing ZOU ; Jiyao LI ; Dingming HUANG ; Lei CHENG ; Tiemei WANG ; Benxiang HOU ; Xuedong ZHOU
International Journal of Oral Science 2025;17(1):46-46
Instrument separation is a critical complication during root canal therapy, impacting treatment success and long-term tooth preservation. The etiology of instrument separation is multifactorial, involving the intricate anatomy of the root canal system, instrument-related factors, and instrumentation techniques. Instrument separation can hinder thorough cleaning, shaping, and obturation of the root canal, posing challenges to successful treatment outcomes. Although retrieval of separated instrument is often feasible, it carries risks including perforation, excessive removal of tooth structure and root fractures. Effective management of separated instruments requires a comprehensive understanding of the contributing factors, meticulous preoperative assessment, and precise evaluation of the retrieval difficulty. The application of appropriate retrieval techniques is essential to minimize complications and optimize clinical outcomes. The current manuscript provides a framework for understanding the causes, risk factors, and clinical management principles of instrument separation. By integrating effective strategies, endodontists can enhance decision-making, improve endodontic treatment success and ensure the preservation of natural dentition.
Humans
;
Root Canal Therapy/adverse effects*
;
Consensus
;
Root Canal Preparation/adverse effects*
5.Glutamine signaling specifically activates c-Myc and Mcl-1 to facilitate cancer cell proliferation and survival.
Meng WANG ; Fu-Shen GUO ; Dai-Sen HOU ; Hui-Lu ZHANG ; Xiang-Tian CHEN ; Yan-Xin SHEN ; Zi-Fan GUO ; Zhi-Fang ZHENG ; Yu-Peng HU ; Pei-Zhun DU ; Chen-Ji WANG ; Yan LIN ; Yi-Yuan YUAN ; Shi-Min ZHAO ; Wei XU
Protein & Cell 2025;16(11):968-984
Glutamine provides carbon and nitrogen to support the proliferation of cancer cells. However, the precise reason why cancer cells are particularly dependent on glutamine remains unclear. In this study, we report that glutamine modulates the tumor suppressor F-box and WD repeat domain-containing 7 (FBW7) to promote cancer cell proliferation and survival. Specifically, lysine 604 (K604) in the sixth of the 7 substrate-recruiting WD repeats of FBW7 undergoes glutaminylation (Gln-K604) by glutaminyl tRNA synthetase. Gln-K604 inhibits SCFFBW7-mediated degradation of c-Myc and Mcl-1, enhances glutamine utilization, and stimulates nucleotide and DNA biosynthesis through the activation of c-Myc. Additionally, Gln-K604 promotes resistance to apoptosis by activating Mcl-1. In contrast, SIRT1 deglutaminylates Gln-K604, thereby reversing its effects. Cancer cells lacking Gln-K604 exhibit overexpression of c-Myc and Mcl-1 and display resistance to chemotherapy-induced apoptosis. Silencing both c-MYC and MCL-1 in these cells sensitizes them to chemotherapy. These findings indicate that the glutamine-mediated signal via Gln-K604 is a key driver of cancer progression and suggest potential strategies for targeted cancer therapies based on varying Gln-K604 status.
Glutamine/metabolism*
;
Myeloid Cell Leukemia Sequence 1 Protein/genetics*
;
Humans
;
Proto-Oncogene Proteins c-myc/genetics*
;
Cell Proliferation
;
Signal Transduction
;
Neoplasms/pathology*
;
F-Box-WD Repeat-Containing Protein 7/genetics*
;
Cell Survival
;
Cell Line, Tumor
;
Apoptosis
6.Clinical and Genetic Study on 48 Children with Short Stature of Unknown Etiology
Lele HOU ; Shaofen LIN ; Xiaojuan LI ; Zulin LIU ; Hui OU ; Lina ZHANG ; Zhe MENG ; Liyang LIANG
Journal of Sun Yat-sen University(Medical Sciences) 2024;45(1):127-135
ObjectiveTo explore the clinical features and causative genes of short stature children with unknown etiology, providing evidence for precise clinical diagnosis and treatment. MethodsThe study recruited children with suspected but undiagnosed short stature from the pediatric endocrinology department in our hospital between January 2018 and August 2022. A retrospective analysis was performed on the clinical manifestations, laboratory test and whole exome sequencing (WES) results. Causative genes were classified and analyzed according to different pathogenic mechanisms. ResultsA total of 48 children (30 boys and 18 girls) were enrolled, aged 7.73 ± 3.97 years, with a height standard deviation score ( HtSDS) of -3.63 ± 1.67. Of the patients, 33 (68.8%) suffered from facial anomalies, 31 (64.6%) from skeletal abnormalities, 26 [54.2%, 61.5% of whom born small for gestational age (SGA)] from perinatal abnormalities, 24 [50.0%, 87.5% of whom with growth hormone (GH) peak concentration below normal] from endocrine disorders and 21(43.8%) had a family history of short stature. Laboratory tests showed that GH peak concentration following stimulation test was (9.72 ± 7.25) ng/mL, IGF-1 standard deviation score was -0.82 ± 1.42, the difference between bone age and chronological age was -0.93 ± 1.39 years. Of the 25 cases with mutant genes found by WES, 14 (56.0%) had pathogenic mutation, 6 (24.0%) likely pathogenic mutation, and 5 (20.0%) mutation of uncertain significance. Pathogenic and likely pathogenic variants were identified in 14 genes, including 10 affecting intracellular signaling pathways (PTPN11, RAF1, RIT1, ARID1B, ANKRD11, CSNK2A1, SRCAP, CUL7, SMAD4 and FAM111A) and 4 affecting extracellular matrix (ECM) components or functions (ACAN, FBN1, COL10A1 and COMP). ConclusionsA rare monogenic disease should be considered as the possible etiology for children with severe short stature accompanied by facial anomalies, disproportionate body types, skeletal abnormalities, SGA, GH peak concentration below normal and a family history of short stature. WES played an important role in identifying the monogenic causes of short stature. This study indicated that affecting growth plate cartilage formation through intracellular signaling pathways and ECM components or functions was the main mechanism of causative genes leading to severe short stature in children. Further research may help discover and study new pathogenic variants and gene functions.
7.Effects of Regulation of SHH/Gli1 Signaling Pathway by Baishile Capsules on Hippocampal Neurogenesis Depression Model Rats
Yan LUO ; Chuan CAI ; Guanghan HOU ; Xiaoyuan LIN ; Hui YANG ; Mei WU ; Pan MENG
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(3):98-104
Objective To explore the effects and mechanism of Baishile Capsules regulating SHH/Gli1 signaling pathway on hippocampal neurogenesis of depression model rats.Methods Totally 32 SD rats were randomly divided into control group,model group,fluoxetine(5.4 mg/kg)group and Baishile Capsules(2.88 g/kg)group,with 8 rats in each group.A depression rat model was established using chronic unpredictable mild stress and single cage feeding method.The model was established and administered simultaneously for 21 consecutive days.Depression-like behavior in rats were evaluated by sucrose preference experiment and open field experiment,ELISA was used to detect brain derived neurotrophic factor(BDNF)contents in rat serum and hippocampal tissue,the number of BrdU,BrdU/DCX,BrdU/NeuN positive cells in dentate gyrus of the hippocampus was observed by immunofluorescence,immunofluorescence and Western blot were used to detect the fluorescence intensity and protein expression of SHH,Gli1,Smo,Ptch in hippocampal tissue.Results Compared with the control group,the degree of sucrose preference significantly decreased in the model group(P<0.01),the number of horizontal and vertical movements significantly decreased(P<0.01),the contents of BDNF in serum and hippocampal tissue significantly decreased(P<0.05),the number of BrdU,BrdU/DCX,BrdU/NeuN positive cells in dentate gyrus of the hippocampus significantly decreased(P<0.01),and the fluorescence intensity and protein expression of SHH,Gli1,Smo,Ptch in hippocampal tissue significantly decreased(P<0.01,P<0.05).Compared with the model group,the degree of sucrose preference and the number of horizontal and vertical movements in fluoxetine group and Baishile Capsule group increased significantly(P<0.05,P<0.01),the contents of BDNF in serum and hippocampal tissue significantly increased(P<0.05,P<0.01),and the number of BrdU,BrdU/DCX,BrdU/NeuN positive cells in dentate gyrus of the hippocampus significantly increased(P<0.01,P<0.05),the fluorescence intensity and protein expressions of SHH,Gli1,Smo,Ptch in hippocampal tissue significantly increased(P<0.01,P<0.05).Conclusion Baishile Capsule can promote the hippocampus neurogenesis in depression model rats by regulating SHH/Gli1 signaling pathway,and play an antidepressant role.
8.The Cell Division Cycle 73(Cdc73)Deletion Mutant Inhibits Sexual Reproduction and Mitosis of Fission Yeast Cells
Meng-Nan LIU ; Xin BAI ; Wen YU ; Xin-Lin LI ; Xiang DING ; Yi-Ling HOU
Chinese Journal of Biochemistry and Molecular Biology 2024;40(6):807-818
The cdc73(cell division cycle 73)gene encodes the RNA polymerase Ⅱ cofactor Cdc73 in fis-sion yeast(Schizosaccharomyces Pombe),and is involved in G2 checkpoint activation and regulates the cell cycle.However,whether Cdc73 regulates cell mitotic dynamics is unknown.In this study,fluores-cent protein labeling and live cell imaging techniques were used to investigate the effects of cdc73 deletion on sexual reproduction and the dynamics of microtubules,actin,mitochondria,and histones during mito-sis.The results showed that in sexual reproduction,cdc73 deletion resulted in a 14.23%increase in the length of ascospores and a 64.08%decrease in the number of cells producing four spores.Analysis of the live cell imaging results revealed that,in mitosis,the elongation length of microtubules in anaphase was shortened by 11.21%,and the elongation time was reduced by 17.39%;the formation and contraction rates of actin rings decreased by 33.33%and 26.09%,respectively,and the formation and contraction times were prolonged by 58.00%and 40.38%,respectively.Meanwhile,the expression levels of actin ring,mitochondrion,and histones also increased.This study revealed the cdc73 deletion inhibits spindle elongation and delays actin ring formation and contraction in mitosis,which provides some scientific basis for further exploring the involvement of Cdc73 in regulating microtubule and actin dynamics in cell divi-sion.
9.Determination of Ultra-Low Levels of 239Pu and 240Pu in Biological Samples
Yong-Chang WANG ; Meng-Ting ZHANG ; Xiao-Lin HOU
Chinese Journal of Analytical Chemistry 2024;52(5):706-716
In this work,a reliable analytical method for ultra-low 239,240Pu in biological samples was developed.Sodium carbonate and magnesium acetate were used as saponification agent and ashing aid,respectively,and then Fe(OH)2-Fe(OH)3 was used for co-precipitation separation and enrichment of plutonium extracted from the ashing samples.Then aluminum nitrate was used as a masking agent to eliminate the interference of a large amount of phosphorus in the loading solution on plutonium during the anion exchange separation process.The results showed that the average recovery of plutonium was more than 73%and the decontamination factor for 238U was 3.3×104-5.4×105 in biological samples.The ultimate sample introduction technology(APEX-Ω)was used in determination of plutonium isotopes by inductively coupled plasma mass spectrometry(ICP-MS/MS)with NH3-He as the collision/reaction gas.The 242Pu standard added before sample separation was used as the yield tracer and isotope diluent to calculate the concentration of 239Pu and 240Pu in samples.This method not only effectively suppressed the 238U peak tail and 238U1H+interference,but also greatly improved the analytical sensitivity of plutonium from 850 cps/(pg/g)(ICP-MS/MS)to 8000 cps/(pg/g)(APEX-ICP-MS/MS).The detection limits of 239Pu and 240Pu in 3.5 kg fresh fish samples were as low as 2.56×10-4 mBq/(kg·wet)and 7.33×10-4 mBq/(kg·wet),respectively.The detection limits of 239Pu and 240Pu in 300 g fresh seaweed samples(30 g dry weight)were 2.98×10-3 mBq/(kg·wet)and 8.55×10-3 mBq/(kg·wet).The concentrations of 239Pu and 240Pu in marine biological samples from the China Sea have been successfully analyzed by using the established analytical method.
10.Expert consensus on irrigation and intracanal medication in root canal therapy
Zou XIAOYING ; Zheng XIN ; Liang YUHONG ; Zhang CHENGFEI ; Fan BING ; Liang JINGPING ; Ling JUNQI ; Bian ZHUAN ; Yu QING ; Hou BENXIANG ; Chen ZHI ; Wei XI ; Qiu LIHONG ; Chen WENXIA ; He WENXI ; Xu XIN ; Meng LIUYAN ; Zhang CHEN ; Chen LIMING ; Deng SHULI ; Lei YAYAN ; Xie XIAOLI ; Wang XIAOYAN ; Yu JINHUA ; Zhao JIN ; Shen SONG ; Zhou XUEDONG ; Yue LIN
International Journal of Oral Science 2024;16(1):26-35
Chemical cleaning and disinfection are crucial steps for eliminating infection in root canal treatment.However,irrigant selection or irrigation procedures are far from clear.The vapor lock effect in the apical region has yet to be solved,impeding irrigation efficacy and resulting in residual infections and compromised treatment outcomes.Additionally,ambiguous clinical indications for root canal medication and non-standardized dressing protocols must be clarified.Inappropriate intracanal medication may present side effects and jeopardize the therapeutic outcomes.Indeed,clinicians have been aware of these concerns for years.Based on the current evidence of studies,this article reviews the properties of various irrigants and intracanal medicaments and elucidates their effectiveness and interactions.The evolution of different kinetic irrigation methods,their effects,limitations,the paradigm shift,current indications,and effective operational procedures regarding intracanal medication are also discussed.This expert consensus aims to establish the clinical operation guidelines for root canal irrigation and a position statement on intracanal medication,thus facilitating a better understanding of infection control,standardizing clinical practice,and ultimately improving the success of endodontic therapy.

Result Analysis
Print
Save
E-mail