1.Effect of medicinal parts and harvest seasons on nature-flavor correlation of plant-based Chinese materia medica.
Qi-Ao MA ; Guang YANG ; Hong-Chao WANG ; Ying LI ; Meng CHENG ; Tie-Lin WANG ; Kai SUN ; Xiu-Lian CHI
China Journal of Chinese Materia Medica 2025;50(15):4228-4237
This study selected 6 529 plant-based Chinese materia medica(PCMM) from Chinese Materia Medica as research subjects and applied a random permutation test to explore the overall correlation characteristics between nature and flavor, as well as the correlation characteristics after distinguishing different medicinal parts and harvest seasons. The results showed that the overall correlation characteristics between nature and flavor in PCMM were significantly associated in the following pairs: cold and bitter, cool and bitter, cool and astringent, cool and light, neutral and sweet, neutral and astringent, neutral and light, neutral and sour, hot and pungent, and warm and pungent. When analyzing the data by distinguishing medicinal parts and/or harvest seasons, new correlation patterns emerged, characterized by the disappearance of some significant correlations and the emergence of new ones. When analyzing by medicinal parts alone, significant correlations were found in the following cases: cold and light in leaves, cold and salty in barks, cool and sweet in fruits and seeds, neutral and pungent in whole herbs, neutral and salty in stems, and warm and salty in flowers. However, no significant correlations were found between cool and bitter in stems and other types of herbs, cool and astringent in fruits, seeds, flowers, and other types of herbs, cool and light in leaves, fruits, seeds, barks, flowers and other types of herbs, neutral and sweet in barks, neutral and astringent in whole herbs and stems, neutral and light in leaves, fruits, seeds, and flowers, neutral and sour in whole herbs, stems, barks, flowers, and other types of herbs, and hot and pungent in whole herbs, stems, flowers, and other types of herbs. When analyzing by harvest season alone, significant correlations were found in the following cases: cold and salty, and cool and sour in herbs harvested in winter, and neutral and salty in herbs harvested year-round. However, no significant correlation was found between cool and light in herbs harvested in winter. When considering both medicinal parts and harvest seasons, compared to the independent influence of medicinal parts, 14 new significant correlations emerged(e.g., the correlation between cool and bitter in stems harvested in spring), while 53 previously significant correlations disappeared(e.g., the correlation between cool and bitter in barks harvested in summer). Compared to the independent influence of harvest seasons, 11 new significant correlations appeared(e.g., the correlation between cold and light in barks harvested in autumn), while 50 previously significant correlations disappeared(e.g., the correlation between hot and pungent in leaves harvested in winter). This study is the first to reveal the influence of medicinal parts and harvest seasons on the correlation between nature and flavor in PCMM, which highlights that these two factors can interact and jointly affect nature-flavor correlations. Further research is needed to explore the underlying mechanisms. This study provides a deeper understanding of the inherent scientific connotations of herbal properties and offers a theoretical foundation for the cultivation and harvesting of PCMM.
Seasons
;
Plants, Medicinal/growth & development*
;
Drugs, Chinese Herbal/chemistry*
;
Taste
2.Effect analysis of innovative model on perioperative pain management in prostate cancer patients with hematuria undergoing prostatic artery embolization.
Xin WANG ; Ji-Xian ZANG ; Xiao-Yang SU ; Chun-Meng PENG ; Sha-Sha LIU ; Ao-Mei LI
National Journal of Andrology 2025;31(8):728-731
OBJECTIVE:
To investigate the effect of innovative perioperative pain management on prostate cancer patients with hematuria undergoing prostatic artery embolization (PAE).
METHODS:
A total of 60 patients undergoing PAE in the Interventional Therapy Department of General Hospital of Eastern Theater Command from May 2024 to January 2025 were selected by convenience sampling method and randomly divided into the intervention group and the control group, with 30 patients in each group. The control group received traditional pain management of nursing. An innovative perioperative pain management was performed in intervention group including preoperative "body-mind-pain" holistic assessment and preparation, intraoperative humanistic care and real-time support, postoperative multimodal analgesia and rehabilitation, dynamic monitoring and closed-loop feedback. The pain degree after 6 hours, 1 day, 3 days and 1 week of the operation, and the quality of life after 1 week of operation, as well as nursing satisfaction at discharge were compared between the two groups.
RESULTS:
The VAS scores of the intervention group were significantly lower than those of the control group after 6 hours, 1 day, 3 days and 1 week of operation (P<0.05). One week after the operation, the quality of life in the observation group was higher than that of the control group significantly (P<0.05). The nursing satisfaction of the observation group was significantly higher than that of the control group at discharge(P<0.05).
CONCLUSION
The application of innovative perioperative pain management can alleviate pain of patients with PAE, which improves the quality of life and nursing satisfaction of patients, and is conducive to the rehabilitation of patients.
Humans
;
Male
;
Embolization, Therapeutic
;
Hematuria/therapy*
;
Prostatic Neoplasms/surgery*
;
Pain Management/methods*
;
Quality of Life
;
Prostate/blood supply*
;
Perioperative Care
;
Pain, Postoperative
;
Middle Aged
;
Aged
;
Pain Measurement
3.Discovery of toad-derived peptide analogue targeting ARF6 to induce immunogenic cell death for immunotherapy of hepatocellular carcinoma.
Dihui XU ; Xiang LV ; Meng YU ; Ao TAN ; Jiaojiao WANG ; Xinyi TANG ; Mengyuan LI ; Wenyuan WU ; Yuyu ZHU ; Jing ZHOU ; Hongyue MA
Journal of Pharmaceutical Analysis 2025;15(3):101038-101038
Image 1.
4.Advances in methods and techniques for the study of polysaccharide in vivo processes and immunomodulatory mechanisms
Chi-yun ZHU ; Ping XIAO ; Yue-yue FANG ; Meng-ting LAI ; Jin-ao DUAN
Acta Pharmaceutica Sinica 2024;59(2):322-335
In recent years, polysaccharides have received much attention because of their high safety and good immunological activity. The study of polysaccharide
5. Mechanism of levosimendan in treating hypoxic pulmonary hypertension based on network pharmacology and molecular docking technology
Xiao-Dan ZHANG ; Yu-Liang XIE ; Meng-Dan GAO ; Ao-Xue YUAN ; Han-Fei LI ; Tian-Tian ZHU ; Xiao-Dan ZHANG ; Yu-Liang XIE ; Meng-Dan GAO ; Ao-Xue YUAN ; Han-Fei LI ; Tian-Tian ZHU ; Xiao-Dan ZHANG ; Yu-Liang XIE ; Meng-Dan GAO ; Ao-Xue YUAN ; Han-Fei LI ; Tian-Tian ZHU
Chinese Pharmacological Bulletin 2024;40(3):565-573
Aim To explore the efficacy of levosimendan on hypoxia pulmonary hypertension through animal experiments, and to further explore the potential mechanism of action using network pharmacological methods and molecular docking technique. Methods The rat model of hypoxia pulmonary hypertension was constructed to detect right heart systolic pressure and right heart remodeling index. HE , Masson, and VG staining were core targets were screened out. GO and KEGG pathway enrichment analysis were performed using the DAVID database. Molecular docking of the core targets was performed with the AutoDock software. Results The results of animal experiments showed that levosimendan had obvious therapeutic effect on hypoxia pulmonary hypertension. The network pharmacology results showed that SRC, HSP90AA1, MAPK1, PIK3R1, AKT1, HRAS, MAPK14, LCK, EGFR and ESR1 used to analyze the changes of rat lung histopathology. Search the Swiss Target Prediction, DrugBank Online, BatMan, Targetnet, SEA, and PharmMapper databases were used to screen for drug targets. Disease targets were retrieved from the GeneCards, OMIM databases. The "drug-target-disease" network was constructed after identification of the two intersection targets. The protein interaction network was constructed and the were the key targets to play a therapeutic role. Molecular docking showed good docking of levosimendan with all the top five core targets with degree values. Conclusions Levosimendan may exert a therapeutic effect on hypoxia-induced pulmonary hypertension through multiple targets.
6.Establishment and evaluation of HPLC-MS/MS method in determining serum H2S
Xiangyu MENG ; Ao ZHANG ; Chunyan LI
China Medical Equipment 2024;21(2):42-47
Objective:To establish a determination method of high performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS)for serum hydrogen sulfide(H2S),so as to determine serum H2S.Methods:This study collected serum samples of 30 patients who admitted to Beijing Jishuitan Hospital affiliated to Capital Medical University from April 2023 to May 2023,and they were divided into osteoporosis group and control group according to whether existed osteoporosis,with 15 cases in each group.HPLC-MS/MS and enzyme-linked immunosorbent assay were used respectively to determine serum H2S.And then,the precision,accuracy and correlation between the two methods were evaluated.Results:HPLC-MS/MS can fast detect the content of serum H2S through detecting methylene blue in the serum,which analysis time was only 1.5 minutes,and its specificity was higher.The relative standard deviation(RSD)value of quality control plasma was 8.77%,and that of quality control plasma with the standard and pure water with standard were respectively 4.58% and 8.23%.The precisions of them met the requirement of detection(less than 20%).The recovery was 103.5% through used the above data,and the accuracy accorded with the requirements of quantitative detection(recovery was 103.5%).Conclusion:HPLC-MS/MS method is rapid and accurate in detecting H2S,which can accurately detect the content of serum H2S.This method has a series of advantages include fast,high throughput,high sensitivity and favorable stability,which contributes to conduct basic research of the content of serum H2S in the cellular pathways of human.
7.Metabolomic Analysis of Mesenteric Lymph Fluid in Rats After Alcohol Gavage
Yuan ZHANG ; Zi-Ye MENG ; Wen-Bo LI ; Yu-Meng JING ; Gui-Chen LIU ; Zi-Yao HAO ; Xiu XU ; Zhen-Ao ZHAO
Progress in Biochemistry and Biophysics 2024;51(9):2194-2209
ObjectiveThe absorption of substances into blood is mainly dependent on the mesenteric lymphatic pathway and the portal venous pathway. The substances transported via the portal venous pathway can be metabolized by the biotransformation in the liver. On the contrary, the substances in the mesenteric lymph fluid enter the blood circulation without biotransformation and can affect the body directly. Alcohol consumption is strongly linked to global health risk. Previous reports have analyzed the changes of metabolites in plasma, serum, urine, liver and feces after alcohol consumption. Whether alcohol consumption affects the metabolites in lymph fluid is still unknown. Therefore, it is particularly important to explore the changes of substances transported via the mesenteric lymphatic pathway and analyze their harmfulness after alcohol drinking. MethodsIn this study, male Wistar rats were divided into high, medium, and low-dosage alcohol groups (receiving Chinese Baijiu at 56%, 28% and 5.6% ABV, respectively) and water groups. The experiment was conducted by alcohol gavage lasting 10 d, 10 ml·kg-1·d-1. Then mesenteric lymph fluid was collected for non-targeted metabolomic analysis by using liquid chromatography-mass spectrometry (LC-MS) and bioinformatic analysis. Principal component analysis and hierarchical clustering were performed by using Biodeep. Meanwhile, KEGG enrichment analysis of the differential metabolites was also performed by Biodeep. MetaboAnalyst was used to analyze the relationship between the differential metabolites and diseases. ResultsThe metabolites in the mesenteric lymph fluid of the high-dosage alcohol group change the most. Based on the KEGG enrichment analysis, the pathways of differential metabolites between the high-dosage alcohol group and the control group are mainly enriched in the central carbon metabolism in cancer, bile secretion, linoleic acid metabolism, biosynthesis of unsaturated fatty acids, etc. Interestingly, in the biosynthesis of unsaturated fatty acids category, the content of arachidonic acid is increased by 7.25 times, whereas the contents of palmitic acid, oleic acid, stearic acid, arachidic acid and erucic acid all decrease, indicating lipid substances in lymph fluid are absorbed selectively after alcohol intake. It’s worth noting that arachidonic acid is closely related to inflammatory response. Furthermore, the differential metabolites are mainly related with schizophrenia, Alzheimer’s disease and lung cancer. The differential metabolites between the medium-dosage alcohol and the control group were mainly enriched in phenylalanine metabolism, valine, leucine and isoleucine biosynthesis, linoleic acid metabolism and cholesterol metabolism. The differential metabolites are mainly related to schizophrenia, Alzheimer’s disease, lung cancer and Parkinson’s disease. As the dose of alcohol increases, the contents of some metabolites in lymph fluid increase, including cholesterol, L-leucine, fumaric acid and mannitol, and the number of metabolites related to schizophrenia also tends to increase, indicatingthat some metabolites absorbed by the intestine-lymphatic pathway are dose-dependent on alcohol intake. ConclusionAfter alcohol intake, the metabolites transported via the intestinal-lymphatic pathway are significantly changed, especially in the high-dosage group. Some metabolites absorbed via the intestinal-lymphatic pathway are dose-dependent on alcohol intake. Most importantly, alcohol intake may cause inflammatory response and the occurrence of neurological diseases, psychiatric diseases and cancer diseases. High-dosage drinking may aggravate or accelerate the occurrence of related diseases. These results provide new insights into the pathogenesis of alcohol-related diseases based on the intestinal-lymphatic pathway.
8.Protective Effects of Mesenchymal Stem Cells on Lung Endothelial Cells and The Underlying Mechanisms
Zi-Ye MENG ; Miao JIANG ; Min GAO ; Zi-Gang ZHAO ; Xiu XU ; Zhen-Ao ZHAO
Progress in Biochemistry and Biophysics 2024;51(8):1822-1833
Acute respiratory distress syndrome (ARDS) is severe respiratory failure in clinical practice, with a mortality rate as high as 40%. Injury of pulmonary endothelial cells and alveolar epithelial cells occurs during ARDS, and pulmonary endothelial injury results in endothelial barrier disruption, which usually occurs before epithelial injury. Especially, when harmful factors enter the blood, such as sepsis and hemorrhagic shock, the pulmonary endothelial cells are affected firstly. The injured endothelial cells may loss cell-to-cell connections and even die. After the endothelial barrier is disrupted, fluid and proteins cross the endothelial barrier, causing interstitial edema. The alveolar epithelium is more resistant to injury, and when the tight barrier of the epithelium is broken, fluids, proteins, neutrophils, and red blood cells in the interstitium enter the alveolar space. From this process, it is easy to find that the endothelium is the first barrier to prevent edema, therefore, the protection of endothelium is the key to the prevention and treatment of ARDS. In addition, the injured endothelial cells express selectin and cell adhesion molecules, promoting the recruitment of immune cells, which exacerbate the inflammatory response and pulmonary endothelial cell injury. Mesenchymal stem cells (MSCs) can be derived from umbilical cord, bone marrow, adipose and so on. Because of low immunogenicity, MSCs can be used for allogeneic transplantation and have great application potential in tissue repairing. Through paracrine effect, MSCs can promote cell survival and balance inflammatory response. MSCs infused intravenously can locate in lungs rapidly and interact with endothelial cells directly, thus MSCs have advantages in protecting pulmonary microvascular endothelial cells. Animal experiments and clinical trials have found that MSC transplantation can significantly improve the symptoms of ARDS and reduce inflammatory reactions and endothelial permeability. Mechanically, MSCs acts mainly through paracrine and immunomodulatory effects. Paracrine cytokines from MSCs can not only promote pulmonary endothelial proliferation, but also reduce inflammatory response and promote cell survival to maintain endothelial integrity. In addition to paracrine cytokines, extracellular vesicles of MSCs are rich in RNAs, proteins and bioactive substances, which can protect pulmonary endothelial cells by intercellular communication and substance transport. Furthermore, MSCs may protect pulmonary endothelial cells indirectly by regulating immune cells, such as reducing the formation of extracellular trapping network of neutrophils, regulating macrophage polarization and regulating Th17/Treg cell balance. Although the beneficial effects of MSCs are verified, much work still needs to be done. MSCs from different tissues have their own characteristics and the scope of application. Different lung diseases possess different endothelial injury mechanisms. Thus, determining the indications of MSCs derived from different tissues is the direction of pulmonary disease clinical trials. From the perspective of transplantation route, intravenous injection of MSCs may have better clinical application in pulmonary endothelial injury caused by endogenous harmful factors in blood. Previous reviews mostly focused on the protective effects of MSCs on alveolar epithelium. In this article, we focused on endothelial cells and reviewed the direct protective effects and mechanisms of MSCs on endothelium through paracrine cytokines and extracellular vesicles, and summarize the mechanisms by which MSCs may indirectly protect pulmonary endothelial cells by regulating immune cells.
9.Reconstruction of rat calvarial defects utilizing an ultraviolet-cured hydrogel loaded with bone marrow mesen-chymal stem cells
Meng DING ; Qiang LI ; Xiaoye LI ; Ao HE ; Zhuo DAI ; Heng DONG ; Yongbin MOU
Journal of Prevention and Treatment for Stomatological Diseases 2024;32(5):330-340
Objective To investigate the osteogenic properties of a methacrylated gelatin(GelMA)/bone marrow mesenchymal stem cells(BMSCs)composite hydrogel applied to the skull defect area of rats and to provide an experi-mental basis for the development of bone regeneration biomaterials.Methods This study was approved by the Animal Ethics Committee of Nanjing University.A novel photocurable composite biohydrogel was developed by constructing photoinitiators[lthium phenyl(2,4,6-trimethylbenzoyl)phosphinate,LAP],GelMA,and BMSCs.The surface morphology and elemental composition of the gel were examined using scanning electron microscopy(SEM)and energy-dispersive X-ray spectroscopy(EDX).The compressive strength of the gel was evaluated using an electronic universal testing ma-chine.After in vitro culture for 1,2,and 5 days,the proliferation of the BMSCs in the hydrogels was assessed using a CCK-8 assay,and their survival and morphology were examined through confocal microscopy.A 5 mm critical bone de-ficiency model was generated in a rat skull.The group receiving composite hydrogel treatment was referred to as the Gel-MA/BMSCs group,whereas the untreated group served as the control group.At the 4th and 8th weeks,micro-CT scans were taken to measure the bone defect area and new bone index,while at the 8th week,skull samples from the defect ar-ea were subjected to H&E staining,van Gieson staining,and Goldner staining to evaluate the quality of bone regenera-tion and new bone formation.Results SEM observed that the solidified GelMA showed a 3D spongy gel network with uniform morphology,the porosity of GelMA was 73.41%and the pore size of GelMA was(28.75±7.13)μm.EDX results showed that C and O were evenly distributed in the network macroporous structure of hydrogel.The hydrogel compres-sion strength was 152 kPa.On the 5th day of GelMA/BMSCs culture,the cellular morphology transitioned from oval to spindle shaped under microscopic observation,accompanied by a significant increase in cell proliferation(159.4%,as determined by the CCK-8 assay).At 4 weeks after surgery,a 3D reconstructed micro-CT image revealed a minimal re-duction in bone defect size within the control group and abundant new bone formation in the GelMA/BMSCs group.At 8 weeks after surgery,no significant changes were observed in the control group's bone defect area,with only limited evi-dence of new bone growth;however,substantial healing of skull defects was evident in the GelMA/BMSCs group.Quan-titative analysis at both the 4-and 8-week examinations indicated significant improvements in the new bone volume(BV),new bone volume/total bone volume(BV/TV),bone surface(BS),and bone surface/total bone volume(BS/TV)in the GelMA/BMSCs group compared to those in the control group(P<0.05).Histological staining showed continuous and dense formation of bone tissue within the defects in the GelMA/BMSCs group and only sporadic formation of new bone,primarily consisting of fibrous connective tissue,at the defect edge in the control group.Conclusion Photocur-ing hydrogel-based stem cell therapy exhibits favorable biosafety profiles and has potential for clinical application by inducing new bone formation and promoting maturation within rat skull defects.
10.The expression mechanism of programmed cell death 1 ligand 1 and its role in immunomodulatory ability of mesenchymal stem cells
Zhuo CHEN ; Meng-Wei YAO ; Xiang AO ; Qing-Jia GONG ; Yi YANG ; Jin-Xia LIU ; Qi-Zhou LIAN ; Xiang XU ; Ling-Jing ZUO
Chinese Journal of Traumatology 2024;27(1):1-10
Programmed cell death 1 ligand 1 (PD-L1) is an important immunosuppressive molecule, which inhibits the function of T cells and other immune cells by binding to the receptor programmed cell death-1. The PD-L1 expression disorder plays an important role in the occurrence, development, and treatment of sepsis or other inflammatory diseases, and has become an important target for the treatment of these diseases. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells with multiple differentiation potential. In recent years, MSCs have been found to have a strong immunosuppressive ability and are used to treat various inflammatory insults caused by hyperimmune diseases. Moreover, PD-L1 is deeply involved in the immunosuppressive events of MSCs and plays an important role in the treatment of various diseases. In this review, we will summarize the main regulatory mechanism of PD-L1 expression, and discuss various biological functions of PD-L1 in the immune regulation of MSCs.

Result Analysis
Print
Save
E-mail