1.FLT3 ligand regulates expansion of regulatory T-cells induced by regulatory dendritic cells isolated from gut-associated lymphoid tissues through the Notch pathway.
Na LI ; Jingwei MAO ; Haiying TANG ; Xiaoyan TAN ; Jian BI ; Hao WU ; Xiuli CHEN ; Yingde WANG
Chinese Medical Journal 2025;138(13):1595-1606
BACKGROUND:
Regulatory dendritic cell (DCreg) subset exhibits a unique capacity for inducing immune tolerance among the variety subsets of dendritic cells (DCs) within gut-associated lymphoid tissues (GALTs). Fms-like tyrosine kinase 3 ligand (FLT3L) is involved in the differentiation of DCregs and the subsequent expansion of regulatory T-cells (Tregs) mediated by DCregs, though the precise mechanism remains poorly understood. This study aimed to explore the expansion mechanism of Treg induced by DCreg and the role of FLT3L in this process.
METHODS:
DCregs were distinguished from other DC subsets isolated from GALTs of BALB/c mice through a mixed lymphocyte reaction assay. The functions and mechanisms by which FLT3L promoted Treg expansion via DCregs were investigated in vitro through co-culture experiments involving DCregs and either CD4 + CD25 - T-cells or CD4 + CD25 + T-cells. Additionally, an in vivo experiment was conducted using a dextran sulfate sodium (DSS)-induced colitis model in mice.
RESULTS:
CD103 + CD11b + DC exhibited DCreg-like functionality and was identified as DCreg for subsequent investigation. Analysis of Foxp3 + Treg percentages within a co-culture system of CD4 + CD25 - T-cells and DCregs, with or without FLT3L, demonstrated the involvement of the FLT3/FLT3L axis in driving the differentiation of precursor T-cells into Foxp3 + Tregs induced by DCregs. Cell migration and co-culture assays revealed that the FLT3/FLT3L axis enhanced DCreg migration toward Tregs via the Rho pathway. Additionally, it was observed that DCregs could promote Treg proliferation through the Notch pathway, as inhibition of Notch signaling by DAPT (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester) suppressed Treg expansion within the co-culture system of DCregs and CD4 + T-cells or CD4 + CD25 + T-cells. Furthermore, the FLT3/FLT3L axis influenced JAG1 expression in DCregs, indirectly modulating Treg expansion. In vivo experiments further established that FLT3L promoted DCreg expansion and restored Treg balance in DSS-induced colitis models, thereby ameliorating colitis symptoms in mice.
CONCLUSION
The FLT3/FLT3L axis is integral to the maintenance of DCreg function in Treg expansion.
Animals
;
T-Lymphocytes, Regulatory/immunology*
;
Dendritic Cells/immunology*
;
Mice
;
Mice, Inbred BALB C
;
Membrane Proteins/metabolism*
;
Receptors, Notch/metabolism*
;
Lymphoid Tissue/metabolism*
;
Signal Transduction/physiology*
;
Coculture Techniques
;
Flow Cytometry
2.HAPLN1 secreted by synovial fibroblasts in rheumatoid arthritis promotes macrophage polarization towards the M1 phenotype.
Chenggen LUO ; Kun HUANG ; Xiaoli PAN ; Yong CHEN ; Yanjuan CHEN ; Yunting CHEN ; Mang HE ; Mei TIAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):413-419
Objective To investigate the effects of hyaluronic acid and proteoglycan-linked protein 1 (HAPLN1) secreted by synovial fibroblasts (FLS) on the polarization of macrophages (Mϕ) in rheumatoid arthritis (RA). Methods Human monocytic leukemia cells (THP-1) were differentiated into Mϕ, which were subsequently exposed to recombinant HAPLN1 (rHAPLN1). RA-FLS were transfected separately with HAPLN1 overexpression plasmid (HAPLN1OE) or small interfering RNA targeting HAPLN1 (si-HAPLN1), and then co-cultured with Mϕ to establish a co-culture model. The viability of Mϕ was assessed using the CCK-8 assay, and the proportions of pro-inflammatory M1-type and anti-inflammatory M2-type Mϕ were analyzed by flow cytometry. Additionally, the expression levels of inflammatory markers, including interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), and inducible nitric oxide synthase (iNOS), were quantified using quantitative real-time PCR and Western blot analysis. Results The viability of Mϕ was increased in the rHAPLN1 group compared to the control group. Furthermore, both the M1/Mϕ ratio and inflammatory factor levels were elevated in the rHAPLN1 and HAPLN1OE groups. In contrast, the si-HAPLN1 group exhibited a decrease in the M1/Mϕ ratio and inflammatory factor expression. Notably, the introduction of rHAPLN1 in rescue experiments further promoted Mϕ polarization towards the M1 phenotype. Conclusion HAPLN1, secreted by RA fibroblast-like synoviocytes (RA-FLS), enhances Mϕ polarization towards the M1 phenotype.
Humans
;
Arthritis, Rheumatoid/genetics*
;
Macrophages/immunology*
;
Fibroblasts/metabolism*
;
Phenotype
;
Extracellular Matrix Proteins/genetics*
;
Proteoglycans/genetics*
;
Synovial Membrane/cytology*
;
Tumor Necrosis Factor-alpha/genetics*
;
Interleukin-1beta/genetics*
;
Nitric Oxide Synthase Type II/genetics*
;
Cell Differentiation
;
Coculture Techniques
;
THP-1 Cells
3.Preliminary study on the role of TM9SF2 knockdown in promoting the activity of the type I interferon signaling pathway to inhibit vesicular stomatitis virus replication.
Kang LI ; Xinyu WANG ; Ran YE ; Lingyun GUO ; Linxu WANG ; Nuo XU ; Tong ZHANG ; Xiaotao DUAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):481-487
Objective To explore the effect of the knockdown of transmembrane 9 superfamily protein member 2 (TM9SF2) on the replication of vesicular stomatitis virus (VSV), and investigate its role in the mechanism of antiviral innate immunity. Methods Small interfering RNA (siRNA) was used to knock down the TM9SF2 gene in human non-small cell lung cancer A549 cells. The CCK-8 method was used to assess cell proliferation. A VSV-green fluorescent protein (VSV-GFP) infected cell model was established. The plaque assay was used to measure the viral titer in the supernatant. RT-qPCR and Western blotting were employed to quantify the mRNA and protein levels of VSV genome replication in A549 cells following VSV infection, as well as the expression of interferon β (IFN-β) mRNA and interferon regulatory factor 3 (IRF3) protein phosphorylation following polyinosinic-polycytidylic acid (poly(I:C)) stimulation. Results Compared to the negative control, the knockdown of TM9SF2 exhibited a significant effect, with no observed impact on A549 cell proliferation. The VSV-GFP infected A549 cell model was successfully established. After viral stimulation, fluorescence intensity was reduced following TM9SF2 knockdown, and the mRNA and protein levels of VSV were significantly downregulated. The viral titer of VSV was decreased. After poly(I:C) stimulation, TM9SF2 knockdown significantly upregulated the mRNA level of IFN-β and the phosphorylation level of IRF3 protein. Conclusion The knockdown of TM9SF2 inhibits the replication of vesicular stomatitis virus, and positively regulates the type I interferon signaling pathway, thus enhancing the host's antiviral innate immune response.
Humans
;
Virus Replication/genetics*
;
Signal Transduction
;
Membrane Proteins/metabolism*
;
A549 Cells
;
Vesiculovirus/physiology*
;
Interferon-beta/metabolism*
;
Interferon Regulatory Factor-3/genetics*
;
Interferon Type I/metabolism*
;
Vesicular Stomatitis/immunology*
;
Gene Knockdown Techniques
;
Vesicular stomatitis Indiana virus/physiology*
;
RNA, Small Interfering/genetics*
4.Effect of different culture time on immunomembrane proteins of human monocyte-derived dendritic cells and their exosomes.
Shumin LUO ; Fang XU ; Pengpeng LU ; Yiyue WANG ; Chuanyun LI ; Weihua LI
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):971-977
Objective To investigate how culture duration affects the expression of immune membrane proteins in human monocyte-derived dendritic cells (DCs) and their exosomes (DEXs). Methods Human monocytes were induced with recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 4 (IL-4) to differentiate into DCs and were subsequently matured with tumor necrosis factor α(TNF-α). Exosomes were isolated by ultracentrifugation, and DEXs were identified by transmission electron microscopy and Amnis imaging flow cytometry, which were also used to quantify the expression of immune membrane proteins on DCs and DEXs. Results On the 10th day of culture, DCs displayed high surface expression of CD11c, CD80, CD86, major histocompatibility complex class I (MHC-I), and MHC-II. Expression peaked at day 18(CD11c: 78.66%±20.33%, CD80: 76.41%±10.02%, CD86: 96.43%±0.43%, MHC-I: 84.71%±2.96%, MHC-II: 80.01%±7.03%). After day 24, the overall expression showed a declining trend, with statistically significant differences observed for all markers except CD80 and MHC-II. By day 30, 80% of the DCs still expressed CD80, CD86, and MHC-II. The expression of immune membrane proteins on DEX surfaces also reached its peak on day 18, followed by an overall decline with prolonged culture time, with statistically significant differences observed for all markers except CD80. Correlation analysis revealed a significant positive relationship between the expression levels of immune membrane proteins on DC and DEX surfaces (CD11c: r=0.98; CD80: r=0.65; CD86: r=0.82; MHC-I: r=0.86; MHC-II: r=0.93). Conclusion Human monocyte-derived DCs in vitro express high expression of immune membrane proteins and maintain stable expression over a specific period. The exosomes secreted by these cells similarly demonstrate high surface expression of immune membrane proteins, with temporal trends aligned with those of the parent DCs.
Humans
;
Dendritic Cells/immunology*
;
Exosomes/immunology*
;
Monocytes/metabolism*
;
Cells, Cultured
;
Time Factors
;
B7-1 Antigen/metabolism*
;
Membrane Proteins/immunology*
;
Cell Culture Techniques/methods*
;
B7-2 Antigen/metabolism*
;
Cell Differentiation
;
CD11c Antigen/metabolism*
;
Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology*
5.Research progress on the cGAS-STING signaling pathway in immune-mediated inflammatory diseases in children.
Xin-Yue WEI ; Xiao-Juan GONG ; Hong JI
Chinese Journal of Contemporary Pediatrics 2025;27(7):881-887
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) signaling pathway is a crucial component of the immune system. It detects abnormal cytosolic double-stranded DNA and promotes the expression of type I interferons and other inflammatory factors, thereby protecting the body from pathogenic infections. In children, an immature immune system or genetic mutations can lead to immune dysregulation, increasing the risk of autoimmune diseases (AID) and autoinflammatory diseases. Recent studies have shown that aberrant activation of the cGAS-STING signaling pathway is associated with the development of AID and autoinflammatory diseases in children. This review summarizes the research progress on the cGAS-STING signaling pathway in childhood AID and autoinflammatory diseases, aiming to provide new directions for clinical diagnosis and treatment.
Humans
;
Nucleotidyltransferases/physiology*
;
Membrane Proteins/physiology*
;
Signal Transduction/physiology*
;
Child
;
Autoimmune Diseases/immunology*
;
Inflammation/etiology*
6.Research advances in the functional roles of ion channels in immune cells and immune response.
Acta Physiologica Sinica 2019;71(6):894-904
Ion channels are a widespread class of membrane proteins that help establish and control cell membrane potential by allowing the passive diffusion of inorganic ions with high specificity through cell membrane. They are widely distributed in various cells and tissues, and their normal structure and function are of fundamental importance for all living organisms. The rapid advances in molecular cloning, protein structure analysis, patch clamp recordings and other technologies have greatly promoted the research on the biophysical and molecular properties of ion channels, and made significant progress in the study of the relationship between ion channels and pathophysiology as well. The immune system is made up of immune cells and organs that work together to protect the body and respond to infection and disease. Remarkably, recent basic and clinical research has revealed that ion channels are frequently and abundantly expressed in immune cells and have crucial roles in immune cell development and immune response. This review summarized recent progress in the roles of ion channels in immune cells, including the expression and regulation of ion channels in immune cells, the effects of ion flux mediated by ion channels on lymphocyte development, and functional roles of ion channels in both innate and adaptive immune responses. We also discussed some unresolved and insufficiently addressed issues in the current research, so as to provide an informative reference for better understanding the functional roles of ion channels in the immune system and further elucidation of their function from a physiological and pathological point of view.
Cell Membrane
;
Immunity
;
physiology
;
Ion Channels
;
immunology
;
Membrane Proteins
;
Research
;
trends
7.Clinical Characteristics of Autoimmune Disease with Dual Seropositive Antibodies of Leucine-rich Glioma Inactivated 1 and Contactin-associated Protein 2.
Li Ling DONG ; Hong Zhi GUAN ; Yan HUANG ; Hong Lin HAO ; Jing Wen NIU ; Qing LIU ; Qiang LU ; Dan XU ; Jun Yi ZHANG ; Li Xin ZHOU ; Li Ri JIN ; Hai Tao REN ; Yi Cheng ZHU ; Bin PENG ; Li Ying CUI ; Xiang Qin ZHOU
Acta Academiae Medicinae Sinicae 2019;41(3):344-350
Objective To explore the clinical characteristics of autoimmune disease with dual seropositive antibodies of leucine-rich glioma inactivated 1(LGI1)and contactin-associated protein 2(Caspr2).Methods The clinical data of seven patients with dual seropositive LGI1 and Caspr2 antibodies who were admitted to the Neurology Department of Peking Union Medical College Hospital from July 2014 to December 2017 were retrospectively analyzed.Results Central,peripheral and autonomic nervous systems were all involved in the seven cases;100%(7/7)presented with insomnia,myokymia,neuropahic pain and hyperhydrosis;71%(5/7)showed memory decline or psychiatric and behavioral symptoms;57%(4/7)had urinary hesitation or constipation;and 43%(3/7)had seizure.Electromyography showed 100%(6/6) of the patients had prolonged afterdischarges following normal M waves and/or abnormal spontaneous firing.Electroencephalography revealed slow waves or basic rhythm slowing in 71%(5/7)of patients.Electrocardiography showed sinus tachycardia,axis deviation,and prolonged QT intervals in 71%(5/7)of patients.One patient died from arrhythmia before immunotherapy.One died from pulmonary infection after immunotherapy.Improvement with immunotherapy was documented in the other five cases.No relapse was noted during the 1-2-year follow-up.Conclusions Autoimmune disease with dual seropositive antibodies of LGI1 and Caspr2 can diffusely affect the central,peripheral,and autonomic nervous systems.The possibility of this disease should be considered in patients with acute and subacute onset of neuropsychiatric symptoms,especially in patients with accompanying insomnia,myokymia,and hyperhydrosis.
Autoantibodies
;
blood
;
Autoimmune Diseases
;
immunology
;
Humans
;
Membrane Proteins
;
immunology
;
Nerve Tissue Proteins
;
immunology
;
Proteins
;
immunology
;
Retrospective Studies
8.Evaluation of the Protective Efficacy of a Fused OmpK/Omp22 Protein Vaccine Candidate against Acinetobacter baumannii Infection in Mice.
San Jun GUO ; Shan REN ; Yong En XIE
Biomedical and Environmental Sciences 2018;31(2):155-158
Acinetobacter baumannii (A. Baumannii) is an emerging opportunistic pathogen responsible for hospital-acquired infections, and which now constitutes a sufficiently serious threat to public health to necessitate the development of an effective vaccine. In this study, a recombinant fused protein named OmpK/Omp22 and two individual proteins OmpK and Omp22 were obtained using recombinant expression and Ni-affinity purification. Groups of BALB/c mice were immunized with these proteins and challenged with a clinically isolated strain of A. baumannii. The bacterial load in the blood, pathological changes in the lung tissue and survival rates after challenge were evaluated. Mice immunized with OmpK/Omp22 fused protein provided significantly greater protection against A. baumannii challenge than those immunized with either of the two proteins individually. The results provide novel clues for future design of vaccines against A. baumannii.
Acinetobacter Infections
;
pathology
;
prevention & control
;
Acinetobacter baumannii
;
genetics
;
immunology
;
Animals
;
Antibodies, Bacterial
;
blood
;
Bacterial Load
;
Bacterial Outer Membrane Proteins
;
genetics
;
immunology
;
Bacterial Vaccines
;
immunology
;
Disease Models, Animal
;
Female
;
Mice, Inbred BALB C
;
Pneumonia, Bacterial
;
pathology
;
prevention & control
;
Recombinant Fusion Proteins
;
genetics
;
immunology
9.LRRC25 plays a key role in all-trans retinoic acid-induced granulocytic differentiation as a novel potential leukocyte differentiation antigen.
Weili LIU ; Ting LI ; Pingzhang WANG ; Wanchang LIU ; Fujun LIU ; Xiaoning MO ; Zhengyang LIU ; Quansheng SONG ; Ping LV ; Guorui RUAN ; Wenling HAN
Protein & Cell 2018;9(9):785-798
Leukocyte differentiation antigens (LDAs) play important roles in the immune system, by serving as surface markers and participating in multiple biological activities, such as recognizing pathogens, mediating membrane signals, interacting with other cells or systems, and regulating cell differentiation and activation. Data mining is a powerful tool used to identify novel LDAs from whole genome. LRRC25 (leucine rich repeat-containing 25) was predicted to have a role in the function of myeloid cells by a large-scale "omics" data analysis. Further experimental validation showed that LRRC25 is highly expressed in primary myeloid cells, such as granulocytes and monocytes, and lowly/intermediately expressed in B cells, but not in T cells and almost all NK cells. It was down-regulated in multiple acute myeloid leukemia (AML) cell lines and bone marrow cells of AML patients and up-regulated after all-trans retinoic acid (ATRA)-mediated granulocytic differentiation in AML cell lines and acute promyelocytic leukemia (APL; AML-M3, FAB classification) cells. Localization analysis showed that LRRC25 is a type I transmembrane molecule. Although ectopic LRRC25 did not promote spontaneous differentiation of NB4 cells, knockdown of LRRC25 by siRNA or shRNA and knockout of LRRC25 by the CRISPR-Cas9 system attenuated ATRA-induced terminal granulocytic differentiation, and restoration of LRRC25 in knockout cells could rescue ATRA-induced granulocytic differentiation. Therefore, LRRC25, a potential leukocyte differentiation antigen, is a key regulator of ATRA-induced granulocytic differentiation.
Antigens, Differentiation
;
immunology
;
metabolism
;
Cell Differentiation
;
drug effects
;
Cell Line, Tumor
;
Granulocytes
;
cytology
;
drug effects
;
immunology
;
metabolism
;
Humans
;
Leukocytes
;
cytology
;
drug effects
;
immunology
;
metabolism
;
Membrane Proteins
;
antagonists & inhibitors
;
immunology
;
metabolism
;
RNA, Small Interfering
;
pharmacology
;
Tretinoin
;
pharmacology
10.Intracellular and extracellular TGF-β signaling in cancer: some recent topics.
Kohei MIYAZONO ; Yoko KATSUNO ; Daizo KOINUMA ; Shogo EHATA ; Masato MORIKAWA
Frontiers of Medicine 2018;12(4):387-411
Transforming growth factor (TGF)-β regulates a wide variety of cellular responses, including cell growth arrest, apoptosis, cell differentiation, motility, invasion, extracellular matrix production, tissue fibrosis, angiogenesis, and immune function. Although tumor-suppressive roles of TGF-β have been extensively studied and well-characterized in many cancers, especially at early stages, accumulating evidence has revealed the critical roles of TGF-β as a pro-tumorigenic factor in various types of cancer. This review will focus on recent findings regarding epithelial-mesenchymal transition (EMT) induced by TGF-β, in relation to crosstalk with some other signaling pathways, and the roles of TGF-β in lung and pancreatic cancers, in which TGF-β has been shown to be involved in cancer progression. Recent findings also strongly suggested that targeting TGF-β signaling using specific inhibitors may be useful for the treatment of some cancers. TGF-β plays a pivotal role in the differentiation and function of regulatory T cells (Tregs). TGF-β is produced as latent high molecular weight complexes, and the latent TGF-β complex expressed on the surface of Tregs contains glycoprotein A repetitions predominant (GARP, also known as leucine-rich repeat containing 32 or LRRC32). Inhibition of the TGF-β activities through regulation of the latent TGF-β complex activation will be discussed.
Drug Discovery
;
Humans
;
Lung Neoplasms
;
drug therapy
;
immunology
;
metabolism
;
Membrane Proteins
;
metabolism
;
Pancreatic Neoplasms
;
drug therapy
;
immunology
;
metabolism
;
Signal Transduction
;
drug effects
;
physiology
;
T-Lymphocytes, Regulatory
;
metabolism
;
Transforming Growth Factor beta
;
antagonists & inhibitors
;
immunology
;
metabolism

Result Analysis
Print
Save
E-mail