1.Effects of moxibustion at "Feishu" (BL13) and "Xinshu" (BL15) on myocardial circPAN3, FOXO3, BNIP3 levels and myocardial fibrosis in rats with chronic heart failure.
Lan LI ; Bing GAO ; Jing HU ; Pan LIU ; Liya LI ; Ruihua LI ; Jing WANG
Chinese Acupuncture & Moxibustion 2025;45(11):1600-1608
OBJECTIVE:
To observe the effects of moxibustion at "Feishu" (BL13) and "Xinshu" (BL15) on the circular RNA of exon 2-5 of the Pan3 gene (circPAN3), forkhead box O3 (FOXO3), and Bcl-2/adenovirus E1B19kDa-interacting protein 3 (BNIP3) in rats with chronic heart failure (CHF), and explore the potential mechanisms of moxibustion in alleviating myocardial fibrosis.
METHODS:
Ten rats of 60 male SPF-grade SD rats were randomly assigned into a normal group. The remaining rats underwent left anterior descending coronary artery (LAD) ligation to establish the CHF model. Forty successfully modeled rats were randomly divided into a model group, a moxibustion group, a rapamycin (RAPA) group, and a moxibustion+RAPA group, with 10 rats in each group. The moxibustion group received mild moxibustion at bilateral "Feishu" (BL13) and "Xinshu" (BL15), 30 min per session. The RAPA group received intraperitoneal injection of the autophagy activator RAPA (1 mg/kg). The moxibustion+RAPA group first received RAPA injection, followed by mild moxibustion at bilateral "Feishu" (BL13) and "Xinshu" (BL15). All interventions were administered once daily for 4 consecutive weeks. After the intervention, cardiac ultrasound was used to measure ejection fraction (EF) and left ventricular fractional shortening (FS). Serum placental growth factor (PLGF) level was determined by ELISA. Myocardial tissue morphology and collagen volume were assessed using hematoxylin-eosin (HE) staining and Masson's trichrome staining. The expression levels of circPAN3, FOXO3, and BNIP3 mRNA in myocardial tissue were detected by real-time PCR, while FOXO3 and BNIP3 protein expression levels were analyzed by Western blot.
RESULTS:
Compared with the normal group, the model group exhibited myocardial cell disorder, severe fibrosis, and increased collagen volume (P<0.01), along with significantly decreased EF, FS, and circPAN3 mRNA expression in myocardial tissue (P<0.01), and the serum PLGF level, as well as FOXO3 and BNIP3 mRNA and protein expression in myocardial tissue were increased (P<0.01). Compared with the model group, the moxibustion group showed reduced myocardial fibrosis, decreased collagen volume (P<0.01), increased EF, FS, and circPAN3 mRNA expression in myocardial tissue (P<0.01), and decreased serum PLGF level as well as FOXO3 and BNIP3 mRNA and protein expression in myocardial tissue (P<0.01). Compared with the model group, the RAPA group showed further deterioration in these parameters (P<0.01). Compared with the RAPA group, the moxibustion+RAPA group exhibited alleviation of myocardial fibrosis, reduced collagen volume (P<0.01), increased EF, FS, and circPAN3 mRNA expression in myocardial tissue (P<0.01), and decreased serum PLGF level as well as FOXO3 and BNIP3 mRNA and protein expression in myocardial tissue (P<0.01).
CONCLUSION
Moxibustion could alleviate myocardial fibrosis in CHF rats, possibly through upregulation of myocardial circPAN3 expression, downregulation of FOXO3 and BNIP3 expression, and inhibition of excessive myocardial autophagy.
Animals
;
Moxibustion
;
Heart Failure/metabolism*
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Myocardium/pathology*
;
RNA, Circular/metabolism*
;
Membrane Proteins/metabolism*
;
Forkhead Box Protein O3/metabolism*
;
Acupuncture Points
;
Humans
;
Fibrosis/genetics*
;
Chronic Disease/therapy*
;
Mitochondrial Proteins
2.Network pharmacology and animal experiments reveal molecular mechanisms of Cordyceps sinensis in ameliorating heart aging and injury in mice by regulating Nrf2/HO-1/NF-κB pathway.
Si-Yi LIU ; Yue TU ; Wei-Ming HE ; Wen-Jie LIU ; Kai-Zhi WEN ; Cheng-Juan LI ; Chao HAN ; Xin-Yu LIANG
China Journal of Chinese Materia Medica 2025;50(4):1063-1074
This study aims to explore the effects and mechanisms of the traditional Chinese medicine Cordyceps sinensis(CS) in ameliorating heart aging and injury in mice based on animal experiments and network pharmacology. A mouse model of heart aging was established by continuously subcutaneous injection of D-galactose(D-gal). Thirty mice were randomly assigned into a normal group, a model group, a low-dose CS(CS-L) group, a high-dose CS(CS-H) group, and a vitamin E(VE) group. Mice in these groups were administrated with normal saline, different doses of CS suspension, or VE suspension via gavage daily. After 60 days of treatment with D-gal and various drugs, all mice were euthanized, and blood and heart tissue samples were collected for determination of the indicators related to heart aging and injury in mice. Experimental results showed that both high and low doses of CS and VE ameliorated the aging phenotype, improved the heart index and myocardial enzyme spectrum, restored the expression levels of proteins associated with cell cycle arrest and senescence-associated secretory phenotypes(SASP), and alleviated the fibrosis and histopathological changes of the heart tissue in model mice. From the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP),259 active ingredients of CS were retrieved. From Gene Cards and OMIM, 2 568 targets related to heart aging were identified, and 133common targets shared by CS and heart aging were obtained. The Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes( KEGG) pathway enrichment revealed that the pathways related to heart aging involved oxidative stress,apoptosis, inflammation-related signaling pathways, etc. The animal experiment results showed that both high and low doses of CS and VE ameliorated oxidative stress and apoptosis in the heart tissue to varying degrees in model mice. Additionally, CS-H and VE activated the nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1) pathway and inhibited the expression of key proteins in the nuclear factor-κB(NF-κB) pathway in the heart tissue of model mice. In conclusion, this study demonstrated based on network pharmacology and animal experiments that CS may alleviate heart aging and injury in aging mice by reducing oxidative stress,apoptosis, and inflammation in the heart via the Nrf2/HO-1/NF-κB pathway.
Animals
;
Cordyceps/chemistry*
;
Mice
;
NF-E2-Related Factor 2/genetics*
;
NF-kappa B/genetics*
;
Aging/genetics*
;
Male
;
Signal Transduction/drug effects*
;
Network Pharmacology
;
Drugs, Chinese Herbal/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Heart/drug effects*
;
Humans
;
Myocardium/metabolism*
;
Membrane Proteins/genetics*
3.Glycyrrhetinic acid combined with doxorubicin induces apoptosis of human hepatocellular carcinoma HepG2 cells by regulating ERMMDs.
Ming-Shi PANG ; Xiu-Yun BAI ; Jue YANG ; Rong-Jun DENG ; Xue-Qin YANG ; Yuan-Yan LIU
China Journal of Chinese Materia Medica 2025;50(11):3088-3096
This study investigates the effect of glycyrrhetinic acid(GA) combined with doxorubicin(DOX) on apoptosis in HepG2 cells and its possible mechanisms. HepG2 cells were cultured in vitro, and cell viability was assessed using the cell counting kit-8(CCK-8) method. Flow cytometry was used to measure apoptosis levels in HepG2 cells. The cells were divided into the following groups: control group(0 μmol·L~(-1)), DOX group(2 μmol·L~(-1)), GA group(150 μmol·L~(-1)), and DOX + GA combination group(2 μmol·L~(-1) DOX + 150 μmol·L~(-1) GA), with treatments given for 24 hours. The colocalization level between the endoplasmic reticulum(ER) and mitochondria was assessed by colocalization fluorescence imaging. Fluorescence probes were used to measure the Ca~(2+) content in the ER and mitochondria. The qRT-PCR and Western blot were used to determine the mRNA and protein expression of sirtuin-3(SIRT3). Co-immunoprecipitation(CO-IP) was applied to investigate the interactions between voltage-dependent anion channel 1(VDAC1) and SIRT3, as well as between VDAC1, glucose-regulated protein 75(GRP75), and inositol 1,4,5-trisphosphate receptor(IP3R). The results showed that the combination of DOX and GA promoted apoptosis in HepG2 liver cancer cells. The colocalization level between the ER and mitochondria was significantly reduced, the Ca~(2+) content in the ER was significantly increased, and the Ca~(2+) content in the mitochondria was significantly decreased. The relative expression of VDAC1, GRP75, and IP3R was significantly reduced, and interactions between VDAC1, GRP75, and IP3R were observed. SIRT3 mRNA and protein expression levels were significantly increased, and an interaction between SIRT3 and VDAC1 was detected. The acetylation level of VDAC1 was significantly decreased. In conclusion, GA combined with DOX induces apoptosis in HepG2 cells by mediating the deacetylation of VDAC1 through SIRT3, weakening the interactions among VDAC1, GRP75, and IP3R. This regulates the formation of endoplasmic reticulum-mitochondrial membrane domains(ERMMDs), affects Ca~(2+) transport between the ER and mitochondria, and ultimately triggers cell apoptosis.
Humans
;
Apoptosis/drug effects*
;
Hep G2 Cells
;
Glycyrrhetinic Acid/pharmacology*
;
Doxorubicin/pharmacology*
;
Liver Neoplasms/genetics*
;
Carcinoma, Hepatocellular/physiopathology*
;
Mitochondria/metabolism*
;
Endoplasmic Reticulum/metabolism*
;
Cell Survival/drug effects*
;
Membrane Proteins/genetics*
4.HAPLN1 secreted by synovial fibroblasts in rheumatoid arthritis promotes macrophage polarization towards the M1 phenotype.
Chenggen LUO ; Kun HUANG ; Xiaoli PAN ; Yong CHEN ; Yanjuan CHEN ; Yunting CHEN ; Mang HE ; Mei TIAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):413-419
Objective To investigate the effects of hyaluronic acid and proteoglycan-linked protein 1 (HAPLN1) secreted by synovial fibroblasts (FLS) on the polarization of macrophages (Mϕ) in rheumatoid arthritis (RA). Methods Human monocytic leukemia cells (THP-1) were differentiated into Mϕ, which were subsequently exposed to recombinant HAPLN1 (rHAPLN1). RA-FLS were transfected separately with HAPLN1 overexpression plasmid (HAPLN1OE) or small interfering RNA targeting HAPLN1 (si-HAPLN1), and then co-cultured with Mϕ to establish a co-culture model. The viability of Mϕ was assessed using the CCK-8 assay, and the proportions of pro-inflammatory M1-type and anti-inflammatory M2-type Mϕ were analyzed by flow cytometry. Additionally, the expression levels of inflammatory markers, including interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), and inducible nitric oxide synthase (iNOS), were quantified using quantitative real-time PCR and Western blot analysis. Results The viability of Mϕ was increased in the rHAPLN1 group compared to the control group. Furthermore, both the M1/Mϕ ratio and inflammatory factor levels were elevated in the rHAPLN1 and HAPLN1OE groups. In contrast, the si-HAPLN1 group exhibited a decrease in the M1/Mϕ ratio and inflammatory factor expression. Notably, the introduction of rHAPLN1 in rescue experiments further promoted Mϕ polarization towards the M1 phenotype. Conclusion HAPLN1, secreted by RA fibroblast-like synoviocytes (RA-FLS), enhances Mϕ polarization towards the M1 phenotype.
Humans
;
Arthritis, Rheumatoid/genetics*
;
Macrophages/immunology*
;
Fibroblasts/metabolism*
;
Phenotype
;
Extracellular Matrix Proteins/genetics*
;
Proteoglycans/genetics*
;
Synovial Membrane/cytology*
;
Tumor Necrosis Factor-alpha/genetics*
;
Interleukin-1beta/genetics*
;
Nitric Oxide Synthase Type II/genetics*
;
Cell Differentiation
;
Coculture Techniques
;
THP-1 Cells
5.Cucurbitacin B alleviates skin lesions and inflammation in a psoriasis mouse model by inhibiting the cGAS-STING signaling pathway.
Yijian ZHANG ; Xueting WANG ; Yang YANG ; Long ZHAO ; Huiyang TU ; Yiyu ZHANG ; Guoliang HU ; Chong TIAN ; Beibei ZHANG ; Zhaofang BAI ; Bin ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):428-436
Objective To investigate the effects of cucurbitacin B (CucB) on alleviating skin lesions and inflammation in psoriasis mice via the cGAS-STING signaling pathway. Methods The expression of genes associated with the cGAS-STING signaling pathway in psoriatic lesions and non-lesional skin was analyzed, and hallmark gene set enrichment analysis was performed. The cytotoxicity of CucB on BMDMs was evaluated using the CCK-8 assay. The expression levels of genes and proteins related to the cGAS-STING signaling pathway, along with the secretion of inflammatory cytokines, were measured at different concentrations of CucB using quantitative PCR, Western blotting, and ELISA. Imiquimod-induced psoriasis BALB/c mice were divided into four groups: normal group, model group, low-dose CucB group [0.1 mg/ (kg.d)], and high-dose CucB group [0.4 mg/ (kg.d)], with five mice per group. PASI scoring was performed to assess the severity of psoriasis after 6 days of treatment, and HE staining was conducted to observe pathological damage. Meanwhile, the mRNA levels of inflammatory cytokines and their secretion were detected by qPCR and ELISA. Results Most cGAS-STING signaling-related genes were upregulated in lesional skin of psoriasis patients, and the hallmark gene set enrichment analysis revealed that the most significantly upregulated genes were primarily associated with immune response signaling pathways. CucB inhibited dsDNA-induced phosphorylation of interferon regulatory factor 3 (IRF3) and STING proteins in both bone-marrow derived macrophages(BMDMs) and THP-1 cells. CucB also suppressed dsDNA-induced mRNA expression of IFNB1, TNF, IFIT1, CXCL10, ISG15, and reduced the secretion of cytokines such as IFN-β, IL-1β, and TNF-α in THP-1 cells. In the imiquimod-induced psoriasis mouse model, CucB treatment reduced psoriatic symptoms, alleviated skin lesions, and attenuated inflammation. ELISA and qPCR results showed that CucB significantly reduced serum secretion levels of IL-6, TNF-α, and IL-1β, as well as the mRNA levels of IL23A, IL1B, IL6, TNF, and IFNB1. Conclusion CucB inhibits cytoplasmic DNA-induced activationc of the GAS-STING pathway. CucB significantly attenuates skin lesions and inflammation in IMQ-induced psoriatic mice, and the potential molecular mechanism may be related to the down-regulation of the cGAS-STING pathway.
Animals
;
Psoriasis/pathology*
;
Signal Transduction/drug effects*
;
Membrane Proteins/genetics*
;
Mice
;
Nucleotidyltransferases/genetics*
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
Skin/metabolism*
;
Triterpenes/therapeutic use*
;
Humans
;
Cytokines/metabolism*
;
Inflammation/drug therapy*
;
Male
6.Preliminary study on the role of TM9SF2 knockdown in promoting the activity of the type I interferon signaling pathway to inhibit vesicular stomatitis virus replication.
Kang LI ; Xinyu WANG ; Ran YE ; Lingyun GUO ; Linxu WANG ; Nuo XU ; Tong ZHANG ; Xiaotao DUAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):481-487
Objective To explore the effect of the knockdown of transmembrane 9 superfamily protein member 2 (TM9SF2) on the replication of vesicular stomatitis virus (VSV), and investigate its role in the mechanism of antiviral innate immunity. Methods Small interfering RNA (siRNA) was used to knock down the TM9SF2 gene in human non-small cell lung cancer A549 cells. The CCK-8 method was used to assess cell proliferation. A VSV-green fluorescent protein (VSV-GFP) infected cell model was established. The plaque assay was used to measure the viral titer in the supernatant. RT-qPCR and Western blotting were employed to quantify the mRNA and protein levels of VSV genome replication in A549 cells following VSV infection, as well as the expression of interferon β (IFN-β) mRNA and interferon regulatory factor 3 (IRF3) protein phosphorylation following polyinosinic-polycytidylic acid (poly(I:C)) stimulation. Results Compared to the negative control, the knockdown of TM9SF2 exhibited a significant effect, with no observed impact on A549 cell proliferation. The VSV-GFP infected A549 cell model was successfully established. After viral stimulation, fluorescence intensity was reduced following TM9SF2 knockdown, and the mRNA and protein levels of VSV were significantly downregulated. The viral titer of VSV was decreased. After poly(I:C) stimulation, TM9SF2 knockdown significantly upregulated the mRNA level of IFN-β and the phosphorylation level of IRF3 protein. Conclusion The knockdown of TM9SF2 inhibits the replication of vesicular stomatitis virus, and positively regulates the type I interferon signaling pathway, thus enhancing the host's antiviral innate immune response.
Humans
;
Virus Replication/genetics*
;
Signal Transduction
;
Membrane Proteins/metabolism*
;
A549 Cells
;
Vesiculovirus/physiology*
;
Interferon-beta/metabolism*
;
Interferon Regulatory Factor-3/genetics*
;
Interferon Type I/metabolism*
;
Vesicular Stomatitis/immunology*
;
Gene Knockdown Techniques
;
Vesicular stomatitis Indiana virus/physiology*
;
RNA, Small Interfering/genetics*
7.Impact of tyrosine phosphorylation site mutation in FUNDC1 protein on mitophagy in H9c2 cardiomyocytes.
Zhaoyang ZHANG ; Yanli YU ; Jieyun WU ; Wei TIAN ; Jingman XU
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):629-636
Objective To investigate the effect of FUNDC1 tyrosine phosphorylation site mutations on mitophagy in H9c2 myocardial cells by constructing tyrosine site mutant plasmids (Y11 and Y18) of the FUN14 domain-containing protein 1 (FUNDC1). Methods The mutant plasmids constructed by whole-gene synthesis were transfected into rat myocardial H9c2 cells and divided into five groups: empty plasmid group, FUNDC1 overexpression group, Y11 mutant group, Y18 mutant group, and Y11 combined with Y18 mutant group. The viability of H9c2 cells was assessed using the CCK-8 assay. Additionally, tetramethylrhodamine ethyl ester (TMRE) staining was utilized to detect mitochondrial membrane potential. The protein expression levels of FUNDC1, translocase of the outer mitochondrial membrane 20 (TOM20), and cytochrome c oxidase IV (COX IV) were detected by Western blot analysis. Confocal microscopy was used to evaluate transfection efficiency as well as the co-localization of mitochondria and lysosomes. Results The FUNDC1 overexpression, Y11, Y18, and Y11 combined with Y18 mutant plasmids were successfully constructed. After plasmid transfection, widespread GFP fluorescence expression was observed under confocal microscopy. Compared with the empty plasmid group, FUNDC1 protein expression levels were significantly increased in the FUNDC1 overexpression group, Y11 mutation group, Y18 mutation group, and Y11 combined with Y18 mutation group, while cell viability and mitochondrial membrane potential showed no significant changes. Compared to the empty plasmid group, cells transfected with Y18 and Y11 combined with Y18 mutant plasmids showed increased TOM20 and COX IV expression levels and decreased mitochondrial-lysosomal co-localization. Conclusion Transfection with FUNDC1 Y18 or Y11 combined with Y18 mutant plasmids inhibited mitophagy in H9c2 myocardial cells.
Animals
;
Rats
;
Mitophagy/genetics*
;
Myocytes, Cardiac/cytology*
;
Mitochondrial Proteins/metabolism*
;
Mutation
;
Phosphorylation
;
Tyrosine/genetics*
;
Cell Line
;
Membrane Proteins/metabolism*
;
Membrane Potential, Mitochondrial
8.Exploring the clinical implications of novel SRD5A2 variants in 46,XY disorders of sex development.
Yu MAO ; Jian-Mei HUANG ; Yu-Wei CHEN-ZHANG ; He LIN ; Yu-Huan ZHANG ; Ji-Yang JIANG ; Xue-Mei WU ; Ling LIAO ; Yun-Man TANG ; Ji-Yun YANG
Asian Journal of Andrology 2025;27(2):211-218
This study was conducted retrospectively on a cohort of 68 patients with steroid 5 α-reductase 2 (SRD5A2) deficiency and 46,XY disorders of sex development (DSD). Whole-exon sequencing revealed 28 variants of SRD5A2 , and further analysis identified seven novel mutants. The preponderance of variants was observed in exon 1 and exon 4, specifically within the nicotinamide adenine dinucleotide phosphate (NADPH)-binding region. Among the entire cohort, 53 patients underwent initial surgery at Sichuan Provincial People's Hospital (Chengdu, China). The external genitalia scores (EGS) of these participants varied from 2.0 to 11.0, with a mean of 6.8 (standard deviation [s.d.]: 2.5). Thirty patients consented to hormone testing. Their average testosterone-to-dihydrotestosterone (T/DHT) ratio was 49.3 (s.d.: 23.4). Genetic testing identified four patients with EGS scores between 6 and 9 as having this syndrome; and their T/DHT ratios were below the diagnostic threshold. Furthermore, assessments conducted using the crystal structure of human SRD5A2 have provided insights into the potential pathogenic mechanisms of these novel variants. These mechanisms include interference with NADPH binding (c.356G>C, c.365A>G, c.492C>G, and c.662T>G) and destabilization of the protein structure (c.727C>T). The c.446-1G>T and c.380delG variants were verified to result in large alterations in the transcripts. Seven novel variations were identified, and the variant database for the SRD5A2 gene was expanded. These findings contribute to the progress of diagnostic and therapeutic approaches for individuals with SRD5A2 deficiency.
Humans
;
3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics*
;
Disorder of Sex Development, 46,XY/blood*
;
Male
;
Membrane Proteins/genetics*
;
Child, Preschool
;
Child
;
Retrospective Studies
;
Adolescent
;
Female
;
Mutation
;
Testosterone/blood*
;
Infant
;
Dihydrotestosterone/blood*
9.Genetic and clinical characteristics of children with RAS-mutated juvenile myelomonocytic leukemia.
Yun-Long CHEN ; Xing-Chen WANG ; Chen-Meng LIU ; Tian-Yuan HU ; Jing-Liao ZHANG ; Fang LIU ; Li ZHANG ; Xiao-Juan CHEN ; Ye GUO ; Yao ZOU ; Yu-Mei CHEN ; Ying-Chi ZHANG ; Xiao-Fan ZHU ; Wen-Yu YANG
Chinese Journal of Contemporary Pediatrics 2025;27(5):548-554
OBJECTIVES:
To investigate the genomic characteristics and prognostic factors of juvenile myelomonocytic leukemia (JMML) with RAS mutations.
METHODS:
A retrospective analysis was conducted on the clinical data of JMML children with RAS mutations treated at the Hematology Hospital of Chinese Academy of Medical Sciences, from January 2008 to November 2022.
RESULTS:
A total of 34 children were included, with 17 cases (50%) having isolated NRAS mutations, 9 cases (27%) having isolated KRAS mutations, and 8 cases (24%) having compound mutations. Compared to children with isolated NRAS mutations, those with NRAS compound mutations showed statistically significant differences in age at onset, platelet count, and fetal hemoglobin proportion (P<0.05). Cox proportional hazards regression model analysis revealed that hematopoietic stem cell transplantation (HSCT) and hepatomegaly (≥2 cm below the costal margin) were factors affecting the survival rate of JMML children with RAS mutations (P<0.05); hepatomegaly was a factor affecting survival in the non-HSCT group (P<0.05).
CONCLUSIONS
Children with NRAS compound mutations have a later onset age compared to those with isolated NRAS mutations. At initial diagnosis, children with NRAS compound mutations have poorer peripheral platelet and fetal hemoglobin levels than those with isolated NRAS mutations. Liver size at initial diagnosis is related to the prognosis of JMML children with RAS mutations. HSCT can improve the prognosis of JMML children with RAS mutations.
Humans
;
Leukemia, Myelomonocytic, Juvenile/therapy*
;
Mutation
;
Male
;
Female
;
Child, Preschool
;
Retrospective Studies
;
Child
;
Infant
;
GTP Phosphohydrolases/genetics*
;
Membrane Proteins/genetics*
;
Adolescent
;
Hematopoietic Stem Cell Transplantation
;
Proportional Hazards Models
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
Prognosis
10.Progress in diagnosis and treatment of RAS-related autoimmune lymphoproliferative disorder.
Jia-Ning REN ; Yang WAN ; Xiao-Fan ZHU
Chinese Journal of Contemporary Pediatrics 2025;27(9):1149-1155
RAS-associated autoimmune lymphoproliferative disorder (RALD) is a rare congenital immunodeficiency disorder caused by somatic mutations in NRAS or KRAS. Its main pathological feature is immune dysregulation-induced hematologic destruction, presenting with symptoms resembling autoimmune diseases. RALD exhibits significant clinical heterogeneity, with manifestations including autoimmune phenomena, hepatosplenomegaly, lymphadenopathy, monocytosis, and increased susceptibility to infections. Owing to its rarity and its unclear nature, a standardized therapeutic regimen for RALD is currently lacking. This review summarizes the latest advances in the pathogenesis, clinical manifestations, differential diagnosis, and treatment of RALD, aiming to provide new insights and reference for the understanding and management of this disorder.
Humans
;
Lymphoproliferative Disorders/etiology*
;
Autoimmune Diseases/etiology*
;
Autoimmune Lymphoproliferative Syndrome/genetics*
;
GTP Phosphohydrolases/genetics*
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
Mutation
;
Membrane Proteins

Result Analysis
Print
Save
E-mail