1.Effects of moxibustion at "Feishu" (BL13) and "Xinshu" (BL15) on myocardial circPAN3, FOXO3, BNIP3 levels and myocardial fibrosis in rats with chronic heart failure.
Lan LI ; Bing GAO ; Jing HU ; Pan LIU ; Liya LI ; Ruihua LI ; Jing WANG
Chinese Acupuncture & Moxibustion 2025;45(11):1600-1608
OBJECTIVE:
To observe the effects of moxibustion at "Feishu" (BL13) and "Xinshu" (BL15) on the circular RNA of exon 2-5 of the Pan3 gene (circPAN3), forkhead box O3 (FOXO3), and Bcl-2/adenovirus E1B19kDa-interacting protein 3 (BNIP3) in rats with chronic heart failure (CHF), and explore the potential mechanisms of moxibustion in alleviating myocardial fibrosis.
METHODS:
Ten rats of 60 male SPF-grade SD rats were randomly assigned into a normal group. The remaining rats underwent left anterior descending coronary artery (LAD) ligation to establish the CHF model. Forty successfully modeled rats were randomly divided into a model group, a moxibustion group, a rapamycin (RAPA) group, and a moxibustion+RAPA group, with 10 rats in each group. The moxibustion group received mild moxibustion at bilateral "Feishu" (BL13) and "Xinshu" (BL15), 30 min per session. The RAPA group received intraperitoneal injection of the autophagy activator RAPA (1 mg/kg). The moxibustion+RAPA group first received RAPA injection, followed by mild moxibustion at bilateral "Feishu" (BL13) and "Xinshu" (BL15). All interventions were administered once daily for 4 consecutive weeks. After the intervention, cardiac ultrasound was used to measure ejection fraction (EF) and left ventricular fractional shortening (FS). Serum placental growth factor (PLGF) level was determined by ELISA. Myocardial tissue morphology and collagen volume were assessed using hematoxylin-eosin (HE) staining and Masson's trichrome staining. The expression levels of circPAN3, FOXO3, and BNIP3 mRNA in myocardial tissue were detected by real-time PCR, while FOXO3 and BNIP3 protein expression levels were analyzed by Western blot.
RESULTS:
Compared with the normal group, the model group exhibited myocardial cell disorder, severe fibrosis, and increased collagen volume (P<0.01), along with significantly decreased EF, FS, and circPAN3 mRNA expression in myocardial tissue (P<0.01), and the serum PLGF level, as well as FOXO3 and BNIP3 mRNA and protein expression in myocardial tissue were increased (P<0.01). Compared with the model group, the moxibustion group showed reduced myocardial fibrosis, decreased collagen volume (P<0.01), increased EF, FS, and circPAN3 mRNA expression in myocardial tissue (P<0.01), and decreased serum PLGF level as well as FOXO3 and BNIP3 mRNA and protein expression in myocardial tissue (P<0.01). Compared with the model group, the RAPA group showed further deterioration in these parameters (P<0.01). Compared with the RAPA group, the moxibustion+RAPA group exhibited alleviation of myocardial fibrosis, reduced collagen volume (P<0.01), increased EF, FS, and circPAN3 mRNA expression in myocardial tissue (P<0.01), and decreased serum PLGF level as well as FOXO3 and BNIP3 mRNA and protein expression in myocardial tissue (P<0.01).
CONCLUSION
Moxibustion could alleviate myocardial fibrosis in CHF rats, possibly through upregulation of myocardial circPAN3 expression, downregulation of FOXO3 and BNIP3 expression, and inhibition of excessive myocardial autophagy.
Animals
;
Moxibustion
;
Heart Failure/metabolism*
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Myocardium/pathology*
;
RNA, Circular/metabolism*
;
Membrane Proteins/metabolism*
;
Forkhead Box Protein O3/metabolism*
;
Acupuncture Points
;
Humans
;
Fibrosis/genetics*
;
Chronic Disease/therapy*
;
Mitochondrial Proteins
2.Effect of electroacupuncture at "Hegu" (LI4) and "Taichong" (LR3) on DNA methylation of the SLC6A4 gene promoter in the hippocampus of depressed rats.
Xi ZHANG ; Shengyong SU ; Xin LI ; Tian WANG
Chinese Acupuncture & Moxibustion 2025;45(11):1609-1616
OBJECTIVE:
To observe the effect of electroacupuncture (EA) at "Hegu" (LI4) and "Taichong" (LR3) on DNA methylation of the solute carrier family 6 member 4 (SLC6A4) gene promoter region in the hippocampus of depressed rats, and to explore the potential antidepressant mechanism of EA.
METHODS:
Thirty male Sprague-Dawley rats were randomly divided into a blank group, a model group, a medication group, a 5-Azacytidine (5-AZA) group, and an EA group, 6 rats in each group. Depression models were established in the model group, the medication group, the 5-AZA group, and the EA group using chronic unpredictable mild stress (CUMS) combined with solitary housing. The medication group was treated with intragastric administration of fluoxetine hydrochloride capsules; the 5-AZA group was treated with intraperitoneal injection of 5-AZA; the EA group was treated with EA at bilateral "Hegu" (LI4) and "Taichong" (LR3), with disperse-dense wave, frequency of 2 Hz/100 Hz, and intensity of 1-1.2 mA, 20 min each session. All the treatment was given in three groups once daily for 21 consecutive days. Behavioral changes were evaluated by sucrose preference test, open field test, and novelty-suppressed feeding test. Serum levels of serotonin (5-HT), dopamine (DA), and norepinephrine (NE) were measured by ELISA. The expression of SLC6A4 and 5-HT1AR protein and mRNA in hippocampus was detected by Western blot and real-time quantitative PCR, respectively. DNA methylation status of the SLC6A4 promoter region in hippocampal tissue was analyzed by bisulfite sequencing PCR (BSP).
RESULTS:
Compared with the blank group, the model group showed decreased sucrose preference, reduced total locomotor distance, and prolonged latency to feeding (P<0.05), decreased serum 5-HT, DA, and NE levels (P<0.05), downregulated hippocampal SLC6A4 and 5-HT1AR protein and mRNA expression (P<0.05), and increased CpG site methylation rate of the SLC6A4 promoter region (P<0.05). Compared with the model group, the medication group, the 5-AZA group, and the EA group exhibited increased sucrose preference, increased total locomotor distance, shortened latency to feeding (P<0.05), elevated serum 5-HT, DA, and NE levels (P<0.05), upregulated hippocampal SLC6A4 and 5-HT1AR protein and mRNA expression (P<0.05), and reduced CpG site methylation rate of the SLC6A4 promoter (P<0.05). Compared with the medication group and the 5-AZA group, the EA group showed higher sucrose preference, greater total locomotor distance, shorter latency to feeding (P<0.05), and increased serum DA and NE levels (P<0.05).
CONCLUSION
EA could improve depressive behaviors in depressed rat models. The underlying mechanism may involve inhibition of SLC6A4 hypermethylation in the hippocampus on the serotonergic system, upregulation of SLC6A4 and 5-HT1AR protein and mRNA expression, and elevation of monoamine neurotransmitters such as 5-HT.
Animals
;
Electroacupuncture
;
Male
;
Hippocampus/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
Acupuncture Points
;
DNA Methylation
;
Depression/metabolism*
;
Promoter Regions, Genetic
;
Serotonin Plasma Membrane Transport Proteins/metabolism*
;
Humans
3.FLT3 ligand regulates expansion of regulatory T-cells induced by regulatory dendritic cells isolated from gut-associated lymphoid tissues through the Notch pathway.
Na LI ; Jingwei MAO ; Haiying TANG ; Xiaoyan TAN ; Jian BI ; Hao WU ; Xiuli CHEN ; Yingde WANG
Chinese Medical Journal 2025;138(13):1595-1606
BACKGROUND:
Regulatory dendritic cell (DCreg) subset exhibits a unique capacity for inducing immune tolerance among the variety subsets of dendritic cells (DCs) within gut-associated lymphoid tissues (GALTs). Fms-like tyrosine kinase 3 ligand (FLT3L) is involved in the differentiation of DCregs and the subsequent expansion of regulatory T-cells (Tregs) mediated by DCregs, though the precise mechanism remains poorly understood. This study aimed to explore the expansion mechanism of Treg induced by DCreg and the role of FLT3L in this process.
METHODS:
DCregs were distinguished from other DC subsets isolated from GALTs of BALB/c mice through a mixed lymphocyte reaction assay. The functions and mechanisms by which FLT3L promoted Treg expansion via DCregs were investigated in vitro through co-culture experiments involving DCregs and either CD4 + CD25 - T-cells or CD4 + CD25 + T-cells. Additionally, an in vivo experiment was conducted using a dextran sulfate sodium (DSS)-induced colitis model in mice.
RESULTS:
CD103 + CD11b + DC exhibited DCreg-like functionality and was identified as DCreg for subsequent investigation. Analysis of Foxp3 + Treg percentages within a co-culture system of CD4 + CD25 - T-cells and DCregs, with or without FLT3L, demonstrated the involvement of the FLT3/FLT3L axis in driving the differentiation of precursor T-cells into Foxp3 + Tregs induced by DCregs. Cell migration and co-culture assays revealed that the FLT3/FLT3L axis enhanced DCreg migration toward Tregs via the Rho pathway. Additionally, it was observed that DCregs could promote Treg proliferation through the Notch pathway, as inhibition of Notch signaling by DAPT (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester) suppressed Treg expansion within the co-culture system of DCregs and CD4 + T-cells or CD4 + CD25 + T-cells. Furthermore, the FLT3/FLT3L axis influenced JAG1 expression in DCregs, indirectly modulating Treg expansion. In vivo experiments further established that FLT3L promoted DCreg expansion and restored Treg balance in DSS-induced colitis models, thereby ameliorating colitis symptoms in mice.
CONCLUSION
The FLT3/FLT3L axis is integral to the maintenance of DCreg function in Treg expansion.
Animals
;
T-Lymphocytes, Regulatory/immunology*
;
Dendritic Cells/immunology*
;
Mice
;
Mice, Inbred BALB C
;
Membrane Proteins/metabolism*
;
Receptors, Notch/metabolism*
;
Lymphoid Tissue/metabolism*
;
Signal Transduction/physiology*
;
Coculture Techniques
;
Flow Cytometry
4.cGAS-STING: From immunology and oncology view.
Xiangxiang LIU ; Chengshi DING ; Jun LU ; Na ZHANG
Chinese Medical Journal 2025;138(23):3050-3068
The cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway is a cornerstone of host innate immunity, playing a central role in detecting cytosolic double-stranded DNA of both endogenous and exogenous origins. Upon activation, cGAS synthesizes the second messenger 2'3'-cyclic GMP-AMP (cGAMP), which binds and activates STING to trigger downstream immune responses, including the production of type I interferons and proinflammatory cytokines. Emerging studies highlight the cGAS-STING pathway as a promising therapeutic target for preventing and treating diverse pathologies, with particularly transformative potential in anticancer therapies. In this review, we dissect the key findings, functions, and associated components of the cGAS-STING pathway. In addition, we emphasize the factors that upregulate or downregulate the pathway, as well as the role of the cGAS-STING pathway in health and disease. By integrating mechanistic insights with clinical perspectives, this review aims to bridge fundamental discoveries with therapeutic applications of cGAS-STING biology.
Humans
;
Nucleotidyltransferases/metabolism*
;
Membrane Proteins/metabolism*
;
Animals
;
Immunity, Innate/physiology*
;
Signal Transduction/physiology*
;
Neoplasms/metabolism*
5.Research progress of the dopamine system in neurological diseases.
Yu-Qi NIU ; Jin-Jin WANG ; Wen-Fei CUI ; Peng QIN ; Jian-Feng GAO
Acta Physiologica Sinica 2025;77(2):309-317
The etiology of nervous system diseases is complicated, posing significant harm to patients and often resulting in poor prognoses. In recent years, the role of dopaminergic system in nervous system diseases has attracted much attention, and its complex regulatory mechanism and therapeutic potential have been gradually revealed. This paper reviews the role of dopaminergic neurons, the neurotransmitter dopamine, dopamine receptors and dopamine transporters in neurological diseases (including Alzheimer's disease, Parkinson's disease and schizophrenia), with a view to further elucidating the disease mechanism and providing new insights and strategies for the treatment of neurological diseases.
Humans
;
Dopamine/metabolism*
;
Nervous System Diseases/physiopathology*
;
Parkinson Disease/physiopathology*
;
Receptors, Dopamine/metabolism*
;
Dopaminergic Neurons/physiology*
;
Dopamine Plasma Membrane Transport Proteins/metabolism*
;
Alzheimer Disease/physiopathology*
;
Schizophrenia/physiopathology*
;
Animals
6.Network pharmacology and animal experiments reveal molecular mechanisms of Cordyceps sinensis in ameliorating heart aging and injury in mice by regulating Nrf2/HO-1/NF-κB pathway.
Si-Yi LIU ; Yue TU ; Wei-Ming HE ; Wen-Jie LIU ; Kai-Zhi WEN ; Cheng-Juan LI ; Chao HAN ; Xin-Yu LIANG
China Journal of Chinese Materia Medica 2025;50(4):1063-1074
This study aims to explore the effects and mechanisms of the traditional Chinese medicine Cordyceps sinensis(CS) in ameliorating heart aging and injury in mice based on animal experiments and network pharmacology. A mouse model of heart aging was established by continuously subcutaneous injection of D-galactose(D-gal). Thirty mice were randomly assigned into a normal group, a model group, a low-dose CS(CS-L) group, a high-dose CS(CS-H) group, and a vitamin E(VE) group. Mice in these groups were administrated with normal saline, different doses of CS suspension, or VE suspension via gavage daily. After 60 days of treatment with D-gal and various drugs, all mice were euthanized, and blood and heart tissue samples were collected for determination of the indicators related to heart aging and injury in mice. Experimental results showed that both high and low doses of CS and VE ameliorated the aging phenotype, improved the heart index and myocardial enzyme spectrum, restored the expression levels of proteins associated with cell cycle arrest and senescence-associated secretory phenotypes(SASP), and alleviated the fibrosis and histopathological changes of the heart tissue in model mice. From the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP),259 active ingredients of CS were retrieved. From Gene Cards and OMIM, 2 568 targets related to heart aging were identified, and 133common targets shared by CS and heart aging were obtained. The Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes( KEGG) pathway enrichment revealed that the pathways related to heart aging involved oxidative stress,apoptosis, inflammation-related signaling pathways, etc. The animal experiment results showed that both high and low doses of CS and VE ameliorated oxidative stress and apoptosis in the heart tissue to varying degrees in model mice. Additionally, CS-H and VE activated the nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1) pathway and inhibited the expression of key proteins in the nuclear factor-κB(NF-κB) pathway in the heart tissue of model mice. In conclusion, this study demonstrated based on network pharmacology and animal experiments that CS may alleviate heart aging and injury in aging mice by reducing oxidative stress,apoptosis, and inflammation in the heart via the Nrf2/HO-1/NF-κB pathway.
Animals
;
Cordyceps/chemistry*
;
Mice
;
NF-E2-Related Factor 2/genetics*
;
NF-kappa B/genetics*
;
Aging/genetics*
;
Male
;
Signal Transduction/drug effects*
;
Network Pharmacology
;
Drugs, Chinese Herbal/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Heart/drug effects*
;
Humans
;
Myocardium/metabolism*
;
Membrane Proteins/genetics*
7.Buzhong Yiqi Decoction alleviates immune injury of autoimmune thyroiditis in NOD.H-2~(h4)mice via c GAS-STING signaling pathway.
Yi-Ran CHEN ; Lan-Ting WANG ; Qing-Yang LIU ; Zhao-Han ZHAI ; Shou-Xin JU ; Xue-Ying CHEN ; Zi-Yu LIU ; Xiao YANG ; Tian-Shu GAO ; Zhi-Min WANG
China Journal of Chinese Materia Medica 2025;50(7):1872-1880
This study aims to explore the effects of Buzhong Yiqi Decoction(BYD) on the cyclic guanosine monophosphate-adenosine monophosphate synthase(cGAS)-stimulator of interferon genes(STING) signaling pathway in the mouse model of autoimmune thyroiditis(AIT) and the mechanism of BYD in alleviating the immune injury. Forty-eight NOD.H-2~(h4) mice were assigned into normal, model, low-, medium-, and high-dose BYD, and selenium yeast tablets groups(n=8). Mice of 8 weeks old were treated with 0.05% sodium iodide solution for 8 weeks for the modeling of AIT and then administrated with corresponding drugs by gavage for 8 weeks before sampling. High performance liquid chromatography was employed to measure the astragaloside Ⅳ content in BYD. Hematoxylin-eosin staining was employed to observe the pathological changes in the mouse thyroid tissue. Enzyme-linked immunosorbent assay was employed to measure the serum levels of thyroid peroxidase antibody(TPO-Ab), thyroglobulin antibody(TgAb), and interferon-γ(IFN-γ). Flow cytometry was employed to detect the distribution of T cell subsets in the spleen. The immunohistochemical method was used to detect the expression of cGAS, STING, TANK-binding kinase 1(TBK1), and interferon regulatory factor 3(IRF3). Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of markers related to the cGAS-STING signaling pathway in the thyroid tissue. The results showed that the content of astragaloside Ⅳ in BYD was(7.06±0.08) mg·mL~(-1). Compared with the normal group, the model group showed disrupted structures of thyroid follicular epithelial cells, massive infiltration of lymphocytes, and elevated levels of TgAb and TPO-Ab. Compared with the model group, the four treatment groups showed intact epithelial cells, reduced lymphocyte infiltration, and lowered levels of TgAb and TPO-Ab. Compared with the normal group, the model group showed increases in the proportions of Th1 and Th17 cells, a decrease in the proportion of Th2 cells, and an increase in the IFN-γ level. Compared with the model group, the four treatment groups presented decreased proportions of Th1 and Th17 cells and lowered levels of IFN-γ, and the medium-dose BYD group showed an increase in the proportion of Th2 cells. Compared with the normal group, the modeling up-regulated the mRNA levels of cGAS, STING, TBK1, and IRF3 and the protein levels of cGAS, p-STING, p-TBK1, and p-IRF3. Compared with the model group, the four treatment groups showed reduced levels of cGAS, STING, TBK1, and IRF3-positive products, down-regulated mRNA levels of cGAS, STING, and TBK1, and down-regulated protein levels of cGAS and p-STING. The high-dose BYD group showed down-regulations in the mRNA level of IRF3 and the protein levels of p-TBK1 and p-IRF3. The above results indicate that BYD can repair the imbalance of T cell subsets, alleviate immune injury, and reduce thyroid lymphocyte infiltration in AIT mice by inhibiting the cGAS-STING signaling pathway.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Signal Transduction/drug effects*
;
Thyroiditis, Autoimmune/metabolism*
;
Mice
;
Membrane Proteins/metabolism*
;
Mice, Inbred NOD
;
Humans
;
Female
;
Nucleotidyltransferases/metabolism*
;
Male
;
Disease Models, Animal
8.Glycyrrhetinic acid combined with doxorubicin induces apoptosis of human hepatocellular carcinoma HepG2 cells by regulating ERMMDs.
Ming-Shi PANG ; Xiu-Yun BAI ; Jue YANG ; Rong-Jun DENG ; Xue-Qin YANG ; Yuan-Yan LIU
China Journal of Chinese Materia Medica 2025;50(11):3088-3096
This study investigates the effect of glycyrrhetinic acid(GA) combined with doxorubicin(DOX) on apoptosis in HepG2 cells and its possible mechanisms. HepG2 cells were cultured in vitro, and cell viability was assessed using the cell counting kit-8(CCK-8) method. Flow cytometry was used to measure apoptosis levels in HepG2 cells. The cells were divided into the following groups: control group(0 μmol·L~(-1)), DOX group(2 μmol·L~(-1)), GA group(150 μmol·L~(-1)), and DOX + GA combination group(2 μmol·L~(-1) DOX + 150 μmol·L~(-1) GA), with treatments given for 24 hours. The colocalization level between the endoplasmic reticulum(ER) and mitochondria was assessed by colocalization fluorescence imaging. Fluorescence probes were used to measure the Ca~(2+) content in the ER and mitochondria. The qRT-PCR and Western blot were used to determine the mRNA and protein expression of sirtuin-3(SIRT3). Co-immunoprecipitation(CO-IP) was applied to investigate the interactions between voltage-dependent anion channel 1(VDAC1) and SIRT3, as well as between VDAC1, glucose-regulated protein 75(GRP75), and inositol 1,4,5-trisphosphate receptor(IP3R). The results showed that the combination of DOX and GA promoted apoptosis in HepG2 liver cancer cells. The colocalization level between the ER and mitochondria was significantly reduced, the Ca~(2+) content in the ER was significantly increased, and the Ca~(2+) content in the mitochondria was significantly decreased. The relative expression of VDAC1, GRP75, and IP3R was significantly reduced, and interactions between VDAC1, GRP75, and IP3R were observed. SIRT3 mRNA and protein expression levels were significantly increased, and an interaction between SIRT3 and VDAC1 was detected. The acetylation level of VDAC1 was significantly decreased. In conclusion, GA combined with DOX induces apoptosis in HepG2 cells by mediating the deacetylation of VDAC1 through SIRT3, weakening the interactions among VDAC1, GRP75, and IP3R. This regulates the formation of endoplasmic reticulum-mitochondrial membrane domains(ERMMDs), affects Ca~(2+) transport between the ER and mitochondria, and ultimately triggers cell apoptosis.
Humans
;
Apoptosis/drug effects*
;
Hep G2 Cells
;
Glycyrrhetinic Acid/pharmacology*
;
Doxorubicin/pharmacology*
;
Liver Neoplasms/genetics*
;
Carcinoma, Hepatocellular/physiopathology*
;
Mitochondria/metabolism*
;
Endoplasmic Reticulum/metabolism*
;
Cell Survival/drug effects*
;
Membrane Proteins/genetics*
9.HAPLN1 secreted by synovial fibroblasts in rheumatoid arthritis promotes macrophage polarization towards the M1 phenotype.
Chenggen LUO ; Kun HUANG ; Xiaoli PAN ; Yong CHEN ; Yanjuan CHEN ; Yunting CHEN ; Mang HE ; Mei TIAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):413-419
Objective To investigate the effects of hyaluronic acid and proteoglycan-linked protein 1 (HAPLN1) secreted by synovial fibroblasts (FLS) on the polarization of macrophages (Mϕ) in rheumatoid arthritis (RA). Methods Human monocytic leukemia cells (THP-1) were differentiated into Mϕ, which were subsequently exposed to recombinant HAPLN1 (rHAPLN1). RA-FLS were transfected separately with HAPLN1 overexpression plasmid (HAPLN1OE) or small interfering RNA targeting HAPLN1 (si-HAPLN1), and then co-cultured with Mϕ to establish a co-culture model. The viability of Mϕ was assessed using the CCK-8 assay, and the proportions of pro-inflammatory M1-type and anti-inflammatory M2-type Mϕ were analyzed by flow cytometry. Additionally, the expression levels of inflammatory markers, including interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), and inducible nitric oxide synthase (iNOS), were quantified using quantitative real-time PCR and Western blot analysis. Results The viability of Mϕ was increased in the rHAPLN1 group compared to the control group. Furthermore, both the M1/Mϕ ratio and inflammatory factor levels were elevated in the rHAPLN1 and HAPLN1OE groups. In contrast, the si-HAPLN1 group exhibited a decrease in the M1/Mϕ ratio and inflammatory factor expression. Notably, the introduction of rHAPLN1 in rescue experiments further promoted Mϕ polarization towards the M1 phenotype. Conclusion HAPLN1, secreted by RA fibroblast-like synoviocytes (RA-FLS), enhances Mϕ polarization towards the M1 phenotype.
Humans
;
Arthritis, Rheumatoid/genetics*
;
Macrophages/immunology*
;
Fibroblasts/metabolism*
;
Phenotype
;
Extracellular Matrix Proteins/genetics*
;
Proteoglycans/genetics*
;
Synovial Membrane/cytology*
;
Tumor Necrosis Factor-alpha/genetics*
;
Interleukin-1beta/genetics*
;
Nitric Oxide Synthase Type II/genetics*
;
Cell Differentiation
;
Coculture Techniques
;
THP-1 Cells
10.Cucurbitacin B alleviates skin lesions and inflammation in a psoriasis mouse model by inhibiting the cGAS-STING signaling pathway.
Yijian ZHANG ; Xueting WANG ; Yang YANG ; Long ZHAO ; Huiyang TU ; Yiyu ZHANG ; Guoliang HU ; Chong TIAN ; Beibei ZHANG ; Zhaofang BAI ; Bin ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):428-436
Objective To investigate the effects of cucurbitacin B (CucB) on alleviating skin lesions and inflammation in psoriasis mice via the cGAS-STING signaling pathway. Methods The expression of genes associated with the cGAS-STING signaling pathway in psoriatic lesions and non-lesional skin was analyzed, and hallmark gene set enrichment analysis was performed. The cytotoxicity of CucB on BMDMs was evaluated using the CCK-8 assay. The expression levels of genes and proteins related to the cGAS-STING signaling pathway, along with the secretion of inflammatory cytokines, were measured at different concentrations of CucB using quantitative PCR, Western blotting, and ELISA. Imiquimod-induced psoriasis BALB/c mice were divided into four groups: normal group, model group, low-dose CucB group [0.1 mg/ (kg.d)], and high-dose CucB group [0.4 mg/ (kg.d)], with five mice per group. PASI scoring was performed to assess the severity of psoriasis after 6 days of treatment, and HE staining was conducted to observe pathological damage. Meanwhile, the mRNA levels of inflammatory cytokines and their secretion were detected by qPCR and ELISA. Results Most cGAS-STING signaling-related genes were upregulated in lesional skin of psoriasis patients, and the hallmark gene set enrichment analysis revealed that the most significantly upregulated genes were primarily associated with immune response signaling pathways. CucB inhibited dsDNA-induced phosphorylation of interferon regulatory factor 3 (IRF3) and STING proteins in both bone-marrow derived macrophages(BMDMs) and THP-1 cells. CucB also suppressed dsDNA-induced mRNA expression of IFNB1, TNF, IFIT1, CXCL10, ISG15, and reduced the secretion of cytokines such as IFN-β, IL-1β, and TNF-α in THP-1 cells. In the imiquimod-induced psoriasis mouse model, CucB treatment reduced psoriatic symptoms, alleviated skin lesions, and attenuated inflammation. ELISA and qPCR results showed that CucB significantly reduced serum secretion levels of IL-6, TNF-α, and IL-1β, as well as the mRNA levels of IL23A, IL1B, IL6, TNF, and IFNB1. Conclusion CucB inhibits cytoplasmic DNA-induced activationc of the GAS-STING pathway. CucB significantly attenuates skin lesions and inflammation in IMQ-induced psoriatic mice, and the potential molecular mechanism may be related to the down-regulation of the cGAS-STING pathway.
Animals
;
Psoriasis/pathology*
;
Signal Transduction/drug effects*
;
Membrane Proteins/genetics*
;
Mice
;
Nucleotidyltransferases/genetics*
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
Skin/metabolism*
;
Triterpenes/therapeutic use*
;
Humans
;
Cytokines/metabolism*
;
Inflammation/drug therapy*
;
Male

Result Analysis
Print
Save
E-mail