1.CD36 gene deletion reduces muscle insulin sensitivity in mice by up-regulating PTP1B expression.
Lin CHEN ; Han ZENG ; Hong QIN ; Xiong Zhong RUAN ; Ping YANG
Journal of Southern Medical University 2022;42(3):392-398
OBJECTIVE:
To investigate the effect CD36 deficiency on muscle insulin signaling in mice fed a normal-fat diet and explore the possible mechanism.
METHODS:
Wild-type (WT) mice and systemic CD36 knockout (CD36-/-) mice with normal feeding for 14 weeks (n=12) were subjected to insulin tolerance test (ITT) after intraperitoneal injection with insulin (1 U/kg). Real-time PCR was used to detect the mRNA expressions of insulin receptor (IR), insulin receptor substrate 1/2 (IRS1/2) and protein tyrosine phosphatase 1B (PTP1B), and Western blotting was performed to detect the protein expressions of AKT, IR, IRS1/2 and PTP1B in the muscle tissues of the mice. Tyrosine phosphorylation of IR and IRS1 and histone acetylation of PTP1B promoter in muscle tissues were detected using co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP), respectively.
RESULTS:
CD36-/- mice showed significantly lowered insulin sensitivity with obviously decreased area under the insulin tolerance curve in comparison with the WT mice (P < 0.05). CD36-/- mice also had significantly higher serum insulin concentration and HOMA-IR than WT mice (P < 0.05). Western blotting showed that the p-AKT/AKT ratio in the muscle tissues was significantly decreased in CD36-/- mice as compared with the WT mice (P < 0.01). No significant differences were found in mRNA and protein levels of IR, IRS1 and IRS2 in the muscle tissues between WT and CD36-/- mice (P>0.05). In the muscle tissue of CD36-/- mice, tyrosine phosphorylation levels of IR and IRS1 were significantly decreased (P < 0.05), and the mRNA and protein levels of PTP1B (P < 0.05) and histone acetylation level of PTP1B promoters (P < 0.01) were significantly increased as compared with those in the WT mice. Intraperitoneal injection of claramine, a PTP1B inhibitor, effectively improved the impairment of insulin sensitivity in CD36-/- mice.
CONCLUSION
CD36 is essential for maintaining muscle insulin sensitivity under physiological conditions, and CD36 gene deletion in mice causes impaired insulin sensitivity by up-regulating muscle PTP1B expression, which results in detyrosine phosphorylation of IR and IRS1.
Animals
;
Gene Deletion
;
Histones/genetics*
;
Insulin
;
Insulin Receptor Substrate Proteins/metabolism*
;
Insulin Resistance/genetics*
;
Membrane Cofactor Protein/genetics*
;
Mice
;
Mice, Knockout
;
Muscles/metabolism*
;
Phosphoric Monoester Hydrolases/metabolism*
;
Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
RNA, Messenger/metabolism*
;
Receptor, Insulin/metabolism*
;
Tyrosine/genetics*
;
Up-Regulation
2.Silencing CD46 and DSG2 in host A549 cells inhibits entry of human adenovirus type 3 and type 7 and reduces interleukin-8 release.
Zhong Ying YANG ; Yang Xi FU ; Luo REN ; Shi Yi CHEN ; En Mei LIU ; Na ZANG
Journal of Southern Medical University 2022;42(9):1344-1350
OBJECTIVE:
To investigate the effect of silencing CD46 and desmoglein 2 (DSG2) in host A549 cells on the entry of human adenovirus type 3 (HAdV-3) and type 7 (HAdV-7) and host cell secretion of inflammatory cytokines.
METHODS:
RNA interference technique was use to silence the expression of CD46 or DSG2 in human epithelial alveolar A549 cells as the host cells of HAdV-3 or HAdV-7. The binding of the viruses with CD46 and DSG2 were observed with immunofluorescence staining at 0.5 and 1 h after viral infection. The viral load in the host cells was determined with qRT-PCR, and IL-8 secretion level was measured using ELISA.
RESULTS:
In infected A549 cells, immunofluorescent staining revealed colocalization of HAdV-3 and HAdV-37 with their receptors CD46 and DSG2 at 0.5 h and 2 h after infection, and the copy number of the viruses increased progressively after the infection in a time-dependent manner. In A549 cells with CD46 silencing, the virus titers were significantly lower at 2, 6, 12 and 24 h postinfection in comparison with the cells without gene silencing; the virus titers were also significantly decreased in the cells with DSG2 silencing. The secretion level of IL-8 increased significantly in A549 cells without siRNA transfection following infection with HAdV-3 and HAdV-7 (P < 0.0001), but decreased significantly in cells with CD46 and DSG2 silencing (P < 0.0001).
CONCLUSION
HAdV-3 and HAdV-7 enter host cells by binding to their receptors CD46 and DSG2, and virus titer and cytokines release increase with infection time. Silencing CD46 and DSG2 can inhibit virus entry and cytokine IL-8 production in host cells.
A549 Cells
;
Adenoviruses, Human/metabolism*
;
Desmoglein 2/metabolism*
;
Humans
;
Interleukin-8
;
Membrane Cofactor Protein/genetics*
;
RNA, Small Interfering
4.The receptors and entry of measles virus: a review.
Guangwen LU ; George F GAO ; Jinghua YAN
Chinese Journal of Biotechnology 2013;29(1):1-9
Measles virus is an enveloped virus with a non-segmented negative-sense RNA genome. Two envelope glycoproteins on the viral surface, namely hemagglutinin (H) and membrane fusion protein (F), are responsible for the virus entry into susceptible host cells. The specific interaction between H and its cellular receptors is a key step in successful virus infection, determining the infectivity and tissue tropism of the measles virus. Thus far, three H receptors have been identified, including the complement regulatory molecule CD46, the signaling lymphocyte activation molecule (SLAM) and the cell adhesion molecule Nectin-4. Here, we reviewed our molecular understanding on the recognition mechanism of these receptors by the viral H protein, aiming to promote future studies on antiviral drug design and measles virus-based oncolytic therapy.
Animals
;
Antigens, CD
;
metabolism
;
Cell Adhesion Molecules
;
metabolism
;
Hemagglutinins, Viral
;
metabolism
;
Humans
;
Measles virus
;
pathogenicity
;
physiology
;
Membrane Cofactor Protein
;
metabolism
;
Membrane Fusion
;
Membrane Fusion Proteins
;
metabolism
;
Receptors, Cell Surface
;
metabolism
;
Receptors, Virus
;
metabolism
;
Signaling Lymphocytic Activation Molecule Family Member 1
5.Inhibitive effects of chimeric oncolytic adenovirus SG235 on leukemia cells in vitro.
Chun-mei YANG ; Hui LIU ; Xiu-di YANG ; Jie JIN ; Wen-bin QIAN
Journal of Zhejiang University. Medical sciences 2010;39(3):226-230
OBJECTIVETo investigate the inhibitive effects of chimeric oncolytic adenovirus SG235 on leukemia cells in vitro.
METHODSThe ability of SG235 to infect leukemia cells and the expression of CD46 on blasts from the patient with leukemia were detected by flow cytometry (FACS). The cytotoxicity of the virus was evaluated by MTT assay. Apoptosis induced by SG235 was detected with Annexin-V/PI staining and TUNEL assay followed by FACS analysis.
RESULTThe majority of leukemia cells from the patient with acute leukemia was CD46-positive. GFP-positive cells were 45.1%, 35.7%, 54.2%, 37.0%, 30.1%, %67.1, 17.2% and 33.1% in Mutz-1, Kasumi-1, K562, HL60, Molt- 4, RPMI8226, L428, and Jurkat cell lines treated with SG235-EGFP vector at MOI (multiplicity of infection) of 50 for 48 h.SG235 treatment resulted in marked growth inhibition and apoptosis of Kassumi-1 cells, and also significantly inhibited expression of p-Akt.
CONCLUSIONThe chimeric oncolytic adenovirus SG235 can infect leukemia cell effectively and results in the growth inhibition and apoptosis of Kasumi-1 cells in vitro.
Adenoviridae ; genetics ; Apoptosis ; Cell Line, Tumor ; Cell Proliferation ; Genetic Vectors ; Humans ; Leukemia ; genetics ; metabolism ; pathology ; Membrane Cofactor Protein ; metabolism ; Oncolytic Viruses ; Transfection
6.A Case of Familial Atypical Hemolytic Uremic Syndrome Associated with Complement Factor H Mutation in Adults.
Hyun Kee LEE ; Hee Kyung NA ; Ji Young LEE ; Jai Won CHANG ; Won Seok YANG ; Soon Bae KIM ; Jung Sik PARK ; Su Kil PARK ; Soon Kil KWON ; Hae Il CHEONG
Korean Journal of Nephrology 2009;28(3):259-264
The hemolytic uremic syndrome is a clinical syndrome defined by the presence of thrombocytopenia, microangiopathic hemolytic anemia and acute renal failure. Atypical hemolytic uremic syndrome (aHUS) which is not usually associated with prodromal symptoms, especially diarrhea, has a higher mortality rate and a stronger tendency to progress to chronic renal failure. In approximately 30-50% of patients with aHUS, mutations have been detected in complement factor H, membrane cofactor protein or factor I. Mutations in the complement regulator factor H are the most frequent and have a very poor prognosis, with most patients developing ESRD. We have experienced a 33-year-old man with a family history of renal failure diagnosed as aHUS resulted from factor H mutation, for whom we carried out hemodialysis, plasmapheresis and other conservative management.
Acute Kidney Injury
;
Adult
;
Anemia, Hemolytic
;
Antigens, CD46
;
Complement Factor H
;
Complement System Proteins
;
Diarrhea
;
Fibrinogen
;
Hemolytic-Uremic Syndrome
;
Humans
;
Kidney Failure, Chronic
;
Plasmapheresis
;
Prodromal Symptoms
;
Prognosis
;
Renal Dialysis
;
Renal Insufficiency
;
Thrombocytopenia
7.Co-expression and synergic effect of human complement regulatory proteins DAF and MCP.
Li XU ; Zhouzhou ZHAO ; Hui LIU ; Dahe JIANG ; Wenxin LI
Chinese Journal of Biotechnology 2008;24(2):220-225
Recombinant expression vector pcDNA3-DAFMCP-DP containing human membrane complement regulatory proteins (hCRPs) decay accelerating factor (DAF) and membrane cofactor protein (MCP) cDNA was constructed by using two independent promoters. After transfected into NIH3T3 cells by calcium phosphate-DNA precipitate method, NIH3T3 pcDNA3-DAFMCP-DP transfectants were obtained by G418 selection. Extraneous genes integration was identified by PCR. The co-expression of human DAF and MCP at both mRNA and protein levels was confirmed by using RT-PCR and Western blot analysis. Human DAF and MCP cDNA were integrated into NIH3T3 pcDNA3-DAFMCP-DP genomic DNA after continuous 30 times passages, indicating that NIH3T3 pcDNA3-DAFMCP-DP were stable cell lines. Human C-mediated cytolysis assays showed that NIH3T3 cells transfected stably with pcDNA3-DAF, pcDNA3-MCP, and pcDNA3-DAFMCP-DP were protected from C-mediated damage and co-expressed human DAF and MCP provided more excellent protection against C-mediated attack, which was compared with either DAF or MCP alone. These results suggest that the dicistronic vector could improve the efficiency of multi-gene delivery and benefit the synergic effect of human membrane complement regulatory proteins DAF and MCP.
3T3 Cells
;
Animals
;
CD55 Antigens
;
biosynthesis
;
genetics
;
pharmacology
;
DNA, Complementary
;
genetics
;
Drug Synergism
;
Graft Rejection
;
prevention & control
;
Humans
;
Membrane Cofactor Protein
;
biosynthesis
;
genetics
;
pharmacology
;
Mice
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
pharmacology
;
Transfection
8.Gene Expression Profile of Lung Cancer Cells Following Photodynamic Therapy.
Ji Hyun SUNG ; Mi Eun LEE ; Seon Sook HAN ; Seung Joon LEE ; Kwon Soo HA ; Woo Jin KIM
Tuberculosis and Respiratory Diseases 2007;63(1):52-58
BACKGROUND: Photodynamic therapy is a viable option for lung cancer treatment, and many studies have shown that it is capable of inducing cell death in lung cancer cells. However, the precise mechanism of this cell death has not been fully elucidated. To investigate the early changes in cancer cell transcription, we treated A549 cells with the photosensitizer DH-I-180-3 and then we illuminated the cells. METHODS: We investigated the gene expression profiles of the the A549 lung cancer cell line, using a DEG kit, following photodynamic therapy and we evaluated the cell viability by performing flow cytometry. We identified the genes that were significantly changed following photodynamic therapy by performing DNA sequencing. RESULTS: The FACS data showed that the cell death of the lung cancer cells was mainly caused by necrosis. We found nine genes that were significantly changed and we identified eight of these genes. We evaluated the expression of two genes, 3-phosphoglycerate dehydrogenase and ribosomal protein S29. The expressed level of carbonic anhydrase XII, clusterin, MRP3s1 protein, complement 3, membrane cofactor protein and integrin beta 1 were decreased. CONCLUSION: Many of the gene products are membrane-associated proteins. The main mechanism of photodynamic therapy with using the photosensitizing agent DH-I-180-3 appears to be necrosis and this may be associated with the altered production of membrane proteins.
Antigens, CD46
;
Carbonic Anhydrases
;
Cell Death
;
Cell Line
;
Cell Survival
;
Clusterin
;
Complement System Proteins
;
Flow Cytometry
;
Gene Expression Profiling
;
Gene Expression*
;
Lung Neoplasms*
;
Lung*
;
Membrane Proteins
;
Necrosis
;
Phosphoglycerate Dehydrogenase
;
Photochemotherapy*
;
Photosensitizing Agents
;
Ribosomal Proteins
;
Sequence Analysis, DNA
;
Transcriptome*
9.Activation of Intrarenal Complement System in Mouse Model for Chronic Cyclosporine Nephrotoxicity.
Young Ok KIM ; Sun Woo LIM ; Can LI ; Hee Jung KANG ; Kyung Ohk AHN ; Hyun Joo YANG ; Jung Yeon GHEE ; Su hyun KIM ; Jin Young KIM ; Bum Soon CHOI ; Jin KIM ; Chul Woo YANG
Yonsei Medical Journal 2007;48(3):517-525
PURPOSE: Local activation of the complement system plays a role in target organ damage. The aim of our study was to investigate the influence of cyclosporine (CsA)- induced renal injury on the complement system in the kidney. MATERIALS AND METHODS: Mice fed a low salt (0.01%) diet were treated with vehicle (VH, olive oil, 1mL/kg/day) or CsA (30mg/kg/day) for one or four weeks. Induction of chronic CsA nephrotoxicity was evaluated with renal function and histomorphology. Activation of the complement system was assessed through analysis of the expression of C3, C4d, and membrane attack complex (MAC), and the regulatory proteins, CD46 and CD55. CsA treatment induced renal dysfunction and typical morphology (tubulointerstitial inflammation and fibrosis) at four weeks. RESULTS: CsA-induced renal injury was associated with increased the expression of C3, C4d, and MAC (C9 and upregulation of complement regulatory proteins (CD 46 and CD55). Immunohistochemistry revealed that the activated complement components were mainly confined to the injured tubulointerstitium. CONCLUSION: CsA-induced renal injury is associated with activation of the intrarenal complement system.
Animals
;
Antigens, CD45/analysis
;
Antigens, CD46/analysis
;
Antigens, CD55/analysis
;
Complement C3/analysis
;
Complement C4b/analysis
;
Complement Membrane Attack Complex/analysis
;
Complement System Proteins/*analysis
;
Cyclosporine/*toxicity
;
Disease Models, Animal
;
Immunity, Innate/drug effects
;
Immunoblotting
;
Immunohistochemistry
;
Immunosuppressive Agents/toxicity
;
Kidney/*drug effects/immunology/pathology
;
Kidney Diseases/*chemically induced/immunology
;
Mice
;
Microscopy, Confocal
;
Peptide Fragments/analysis
10.Hemolytic uremic syndrome.
Korean Journal of Pediatrics 2007;50(10):931-937
The hemolytic uremic syndrome (HUS) is a rare disease of microangiopathic hemolytic anemia, low platelet count and renal impairment. HUS usually occurs in young children after hemorrhagic colitis by shigatoxin-producing enterohemorrhagic E. coli (D+HUS). HUS is the most common cause of acute renal failure in infants and young children, and is a substantial cause of acute mortality and morbidity; however, renal function recovers in most of them. About 10% of children with HUS do not reveal preceding diarrheal illness, and is referred to as D- HUS or atypical HUS. Atypical HUS comprises a heterogeneous group of thrombomicroangiopathy (TMA) triggered by non-enteric infection, virus, drug, malignancies, transplantation, and other underlying medical condition. Emerging data indicate dysregulation of alternative complement pathway in atypical HUS, and genetic analyses have identified mutations of several regulatory genes; i.e. the fluid phase complement regulator Factor H (CFH), the integral membrane regulator membrane cofactor protein (MCP; CD46) and the serine protease Factor I (IF). The uncontrolled activation of the complement alternative pathway results in the excessive consumption of C3. Plasma exchange or plasma infusion is recommended for treatment of, and has dropped the mortality rate. However, overall prognosis is poor, and many patients succumb to end- stage renal disease. Clinical presentations, response to plasma therapy, and outcome after renal transplantation are influenced by the genotype of the complement regulators. Thrombotic thrombocytopenic purpura (TTP), another type of TMA, occurs mainly in adults as an acquired disease accompanied by fever, neurologic deficits and renal abnormalities. However, less frequent cases of congenital or hereditary TTP associated with ADAMTS-13 (a disintegrin and metalloprotease, with thrombospondin 1-like domains 13) gene mutations have been reported, also. Recent advances in molecular genetics better allow various HUS to be distinguished on the basis of their pathogenesis. The genetic analysis of HUS is important in defining the underlying etiology, predicting the genotype-related outcome and optimizing the management of the patients.
Acute Kidney Injury
;
Adult
;
Anemia, Hemolytic
;
Antigens, CD46
;
Child
;
Colitis
;
Complement Factor H
;
Complement Pathway, Alternative
;
Complement System Proteins
;
Enterohemorrhagic Escherichia coli
;
Fever
;
Fibrinogen
;
Genes, Regulator
;
Genotype
;
Hemolytic-Uremic Syndrome*
;
Humans
;
Infant
;
Kidney Transplantation
;
Membranes
;
Molecular Biology
;
Mortality
;
Neurologic Manifestations
;
Plasma
;
Plasma Exchange
;
Platelet Count
;
Prognosis
;
Purpura, Thrombotic Thrombocytopenic
;
Rare Diseases
;
Serine Proteases
;
Thrombospondins

Result Analysis
Print
Save
E-mail