1.Inhibitory Effects of Nardostachys Jatamansi DC. Volatile Oil on Psychological Factors SP/CORT-Induced Hyperpigmentation.
Man YANG ; Kang CHENG ; Jie GU ; Hua-Li WU ; Yi-Ming LI
Chinese journal of integrative medicine 2025;31(12):1097-1104
OBJECTIVE:
To explore the inhibitory effects of Nardostachys Jatamansi DC. volatile oil (NJVO) on psychological factors substance P (SP)/cortisol (CORT)-induced hyperpigmentation.
METHODS:
The model of psychologically-induced hyperpigmentation of B16F10 cells was created using SP (10 nmol/L) + CORT (10 µmol/L) for 72 h. The levels of melanin content, tyrosinase (TYR) activity using NaOH lysis and L-dihydroxyphenylalanine (L-DOPA) oxidation methods were assessed, respectively. The effect of NJVO on SP/CORT-induced normal human skin tissue pigmentation was detected by Masson staining. Protein expressions of tyrosinase-related protein 1 (TRP-1), tyrosinase-relative protein 2 (DCT), and microphthalmia-associated transcription factor were determined using Western blot. The melanosome number, maturation, and melanosomal structure changes were detected through transmission electron microscopy and immunofluorescence experiments. In vivo, zebrafish pigment content was evaluated in SP/CORT-induced zebrafish hyperpigmentation model.
RESULTS:
NJVO significantly reduced the melanin content (P<0.01) and inhibited tyrosinase activity (P<0.01), the pigmentation of the normal skin tissue in the NJVO group was significantly lower than that in the SP/CORT group (P<0.05). And NJVO considerably downregulated expressions of melanogenesis-related proteins (TYR, TRP-1, DCT) in cells (P<0.01). In addition, the number of melanosomes was decreased and the dentrites formation of B16F10 cells was inhibited after NJVO treatment (P<0.01). In vivo, NJVO significantly reduced the pigment content in the zebrafish body (P<0.01).
CONCLUSION
NJVO effectively reversed SP/CORT-induced hyperpigmentation by suppressing the activity and expression of TYR and TRPs and inhibiting melanosome maturation in mouse B16F10 melanoma cells.
Animals
;
Hyperpigmentation/psychology*
;
Zebrafish
;
Oils, Volatile/therapeutic use*
;
Melanins/metabolism*
;
Humans
;
Monophenol Monooxygenase/metabolism*
;
Mice
;
Nardostachys/chemistry*
;
Substance P
;
Hydrocortisone
;
Skin Pigmentation/drug effects*
;
Cell Line, Tumor
;
Melanosomes/ultrastructure*
;
Microphthalmia-Associated Transcription Factor/metabolism*
;
Melanoma, Experimental
;
Oxidoreductases/metabolism*
;
Intramolecular Oxidoreductases/metabolism*
2.Acinetobacter sp. ME1: a multifunctional bacterium for phytoremediation utilizing melanin production, heavy metal tolerance, and plant growth promotion.
Journal of Zhejiang University. Science. B 2025;26(11):1103-1120
Microorganisms inhabiting soils contaminated with heavy metals produce melanin, a dark brown pigment, as a survival strategy. In this study, a melanin-producing bacterium, Acinetobacter sp. ME1, with heavy metal tolerance and plant growth-promoting traits, was isolated from abandoned mine soil. Strain ME1 exhibited growth at concentrations of Zn up to 250 mg/L, Cd and Pb up to 100 mg/L, and Cr up to 50 mg/L. It had the ability to produce the plant hormone indole-3-acetic acid and siderophores along with 1-aminocyclopropane-1-carboxylic acid deaminase and protease activities. Additionally, it showed antioxidant activity, including catalase and 2,2-diphenyl-1-picryhydrazyl (DPPH) scavenging activities. The optimal conditions for melanin production by ME1 were a pH of 7 and a temperature of 35 ℃. At 1000 mg/L, ME1-extracted melanin exhibited DPPH radical scavenging activity of (25.040±0.007)%, a sun protection factor of 15.200±0.260, and 19.6% antibacterial activity against the plant pathogen Xanthomonas campestris. Furthermore, its adsorption capacity was (0.235±0.073) mg/g melanin for Zn and (0.277±0.008) mg/g melanin for Ni. In plants of Brassica chinensis grown under conditions of hydroponic cultivation with single heavy metal contamination of Cd, Zn, Pb, or Cr, the removal efficiency of each heavy metal was improved by 0.1‒1.8 times after 3 d following inoculation with the strain ME1 compared to the plants grown under the same conditions without inoculation. In addition, ME1 inoculation improved the removal efficiency of each heavy metal by 0.1‒1.0 times under multiple heavy metal contamination conditions. These findings suggest that Acinetobacter sp. ME1 could be used to enhance phytoremediation efficiency in heavy metal-contaminated soils. Moreover, the melanin it produces also holds promise in cosmetics, household products, and medical applications due to its photoprotective, antioxidant, and antimicrobial properties.
Acinetobacter/metabolism*
;
Biodegradation, Environmental
;
Metals, Heavy/metabolism*
;
Melanins/metabolism*
;
Soil Microbiology
;
Antioxidants/metabolism*
;
Plant Development
;
Soil Pollutants/metabolism*
;
Indoleacetic Acids/metabolism*
3.Nigella sativa L. seed extract alleviates oxidative stress-induced cellular senescence and dysfunction in melanocytes.
Ben NIU ; Xiaohong AN ; Yongmei CHEN ; Ting HE ; Xiao ZHAN ; Xiuqi ZHU ; Fengfeng PING ; Wei ZHANG ; Jia ZHOU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(2):203-213
Nigella sativa L. seeds have been traditionally utilized in Chinese folk medicine for centuries to treat vitiligo. This study revealed that the ethanolic extract of Nigella sativa L. (HZC) enhances melanogenesis and mitigates oxidative stress-induced cellular senescence and dysfunction in melanocytes. In accordance with established protocols, the ethanol fraction from Nigella sativa L. seeds was extracted, concentrated, and lyophilized to evaluate its herbal effects via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, tyrosinase activity evaluation, measurement of cellular melanin contents, scratch assays, senescence-associated β-galactosidase (SA-β-gal) staining, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis for expression profiling of experimentally relevant proteins. The results indicated that HZC significantly enhanced tyrosinase activity and melanin content while notably increasing the protein expression levels of Tyr, Mitf, and gp100 in B16F10 cells. Furthermore, HZC effectively mitigated oxidative stress-induced cellular senescence, improved melanocyte condition, and rectified various functional impairments associated with melanocyte dysfunction. These findings suggest that HZC increases melanin synthesis in melanocytes through the activation of the MAPK, PKA, and Wnt signaling pathways. In addition, HZC attenuates oxidative damage induced by H2O2 therapy by activating the nuclear factor E2-related factor 2-antioxidant response element (Nrf2-ARE) pathway and enhancing the activity of downstream antioxidant enzymes, thus preventing premature senescence and dysfunction in melanocytes.
Oxidative Stress/drug effects*
;
Melanocytes/cytology*
;
Cellular Senescence/drug effects*
;
Nigella sativa/chemistry*
;
Plant Extracts/pharmacology*
;
Seeds/chemistry*
;
Mice
;
Animals
;
Melanins/metabolism*
;
Monophenol Monooxygenase/metabolism*
;
Humans
4.Melanogenesis of quality markers in Vernonia anthelmintica Injection based on UPLC-Q-TOF-MS combined network pharmacology.
Lin LUO ; Yan-Yuan ZHANG ; Cheng WANG ; Si-Lu HUANG ; Xiao-Qin WANG ; Bo ZHANG
China Journal of Chinese Materia Medica 2023;48(6):1606-1619
This study aimed to evaluate the biological effect and mechanism of Vernonia anthelmintica Injection(VAI) on melanin accumulation. The in vivo depigmentation model was induced by propylthiouracil(PTU) in zebrafish, and the effect of VAI on melanin accumulation was evaluated based on the in vitro B16F10 cell model. The chemical composition of VAI was identified according to the high-performance liquid chromatography quadrupole-time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS). Network pharmaco-logy was applied to predict potential targets and pathways of VAI. A "VAI component-target-pathway" network was established, and the pharmacodynamic molecules were screened out based on the topological characteristics of the network. The binding of active molecules to key targets was verified by molecular docking. The results showed that VAI promoted tyrosinase activity and melanin production in B16F10 cells in a dose-and time-dependent manner and could restore the melanin in the body of the zebrafish model. Fifty-six compounds were identified from VAI, including flavonoids(15/56), terpenoids(10/56), phenolic acids(9/56), fatty acids(9/56), steroids(6/56), and others(7/56). Network pharmacological analysis screened four potential quality markers, including apigenin, chrysoeriol, syringaresinol, and butein, involving 61 targets and 65 pathways, and molecular docking verified their binding to TYR, NFE2L2, CASP3, MAPK1, MAPK8, and MAPK14. It was found that the mRNA expression of MITF, TYR, TYRP1, and DCT in B16F10 cells was promoted. By UPLC-Q-TOF-MS and network pharmacology, this study determined the material basis of VAI against vitiligo, screened apigenin, chrysoeriol, syringaresinol, and butein as the quality markers of VAI, and verified the efficacy and internal mechanism of melanogenesis, providing a basis for quality control and further clinical research.
Animals
;
Vernonia/chemistry*
;
Melanins/metabolism*
;
Zebrafish/metabolism*
;
Network Pharmacology
;
Molecular Docking Simulation
;
Apigenin/pharmacology*
;
Drugs, Chinese Herbal/pharmacology*
;
Chromatography, High Pressure Liquid
5.Exosomes released by melanocytes modulate fibroblasts to promote keloid formation: a pilot study.
Zeren SHEN ; Jinjin SHAO ; Jiaqi SUN ; Jinghong XU
Journal of Zhejiang University. Science. B 2022;23(8):699-704
Keloids are a common type of pathological scar as a result of skin healing, which are extremely difficult to prevent and treat without recurrence. The pathological mechanism of keloids is the excessive proliferation of fibroblasts, which synthesize more extracellular matrices (ECMs), including type I/III collagen (COL-1/3), mucopolysaccharides, connective tissue growth factor (CTGF, also known as cellular communication network factor 2 (CCN2)), and fibronectin (FN) in scar tissue, mostly through the abnormal activation of transforming growth factor-β (TGF-β)/Smads pathway (Finnson et al., 2013; Song et al., 2018). Genetic factors, including race and skin tone, are considered to contribute to keloid formation. The reported incidence of keloids in black people is as high as 16%, whereas white people are less affected. The prevalence ratio of colored people to white people is 5:1-15:1 (Rockwell et al., 1989; LaRanger et al., 2019). In addition, keloids have not been reported in albinism patients of any race, and those with darker skin in the same race are more likely to develop this disease (LaRanger et al., 2019). Skin melanocyte activity is significantly different among people with different skin tones. The more active the melanocyte function, the more melanin is produced and the darker the skin. Similarly, in the same individual, the incidence of keloids increases during periods when melanocytes are active, such as adolescence and pregnancy. Keloids rarely appear in areas where melanocytes synthesize less melanin, such as in the palms and soles. Thus, the formation of keloids seems to be closely related to melanocyte activity.
Adolescent
;
Cells, Cultured
;
Exosomes/metabolism*
;
Fibroblasts/metabolism*
;
Humans
;
Keloid/pathology*
;
Melanins/metabolism*
;
Melanocytes/pathology*
;
Pilot Projects
;
Skin/metabolism*
;
Transforming Growth Factor beta/metabolism*
6.Natural melanin-based nanoparticles with photothermal/photodynamic activities induce ovarian cancer cell death.
Jie Rong YANG ; Xiao Ping CHEN
Journal of Southern Medical University 2022;42(11):1681-1688
OBJECTIVE:
To investigate the physicochemical characteristics of natural melanin-like nanoparticles (PDA NPs) and their synergistic anti-tumor efficacy with photothermal and photodynamic (PTT/PDT) therapy.
METHODS:
The chemically synthesized PDA NPs were characterized using transmission electron microscope (TEM), dynamic light scattering (DLS) and Zeta potential analysis, and their photothermal and photodynamic properties were assessed with near-infrared excitation light (NIR). The antitumor efficacy of free PDA or PDA combined with NIR irradiation (0.7 and 1.0 W/cm2) was evaluated in ovarian cancer cells using flow cytometry, Cell Counting Kit-8 (CCK-8), and Transwell assay and in a mouse model bearing subcutaneous ovarian cancer xenograft.
RESULTS:
The synthesized PDA NPs showed a spherical morphology with diameters around 100 nm and a zeta potential of -20 mV. Upon NIR irradiation at 0.7 and 1.0 W/cm2, the particles underwent temperature changes (ΔT) of about 15 and 30 ℃, respectively, and produced a large amount of singlet oxygen, demonstrating their excellent PTT/PDT properties. In ovarian cancer cells, treatment with PDA NPs alone did not induce obvious changes in reactive oxygen species (ROS) production or mitochondrial membrane potential (MTP), but when combined with NIR irradiation, these particles caused a significant increase of ROS and a reduction of MTP (P < 0.001), and such changes were more prominent with high power NIR (P < 0.01). PDA NPs alone showed no obvious cytotoxicity, but the combination of PDA with NIR irradiation produced potent killing effect on ovarian cancer cells (P < 0.001), and the effect was much stronger with a high power irradiation (P < 0.001). While PDA alone showed no inhibitory effect on tumor cell metastasis, the combined treatment with PDA and NIR irradiation, especially at a high power, significantly suppressed invasion and migration of ovarian cancer cells (P < 0.001). In the tumor-bearing mouse model, the combined treatment, but not PDA alone, produced a significant inhibitory effect on tumor growth (P < 0.001).
CONCLUSION
PDA NPs combined with NIR has a strong anti-tumor effect, suggesting a potential new therapeutic strategy for ovarian cancer.
Humans
;
Animals
;
Mice
;
Female
;
Melanins
;
Ovarian Neoplasms/therapy*
;
Cell Death
;
Nanoparticles
;
Antibodies
8.Ultrasonographic features and clinical pathological of liver metastasis in patients with melanoma.
Yi Xing FENG ; Sheng ZHANG ; Xi WEI
Chinese Journal of Oncology 2022;44(4):354-359
Objective: To investigate the ultrasonographic features and clinical pathological of liver metastasis in patients with melanoma. Methods: Thirteen patients with liver metastasis from melanoma treated in Tianjin Medical University Cancer Institute and Hospital from 2013 to 2019 were selected, and their ultrasonographic and clinicopathological characteristics were analyzed retrospectively. Results: Eleven of the 13 patients had multiple liver lesions. The maximum diameter of the lesions was (5.89±2.73) cm. Five cases of lesions were mixed echo (3 cases with high melanin content), 4 cases of lesions were hyperechoic (3 cases with low melanin content), 3 cases of lesions were hypoechoic (all with high melanin content), 1 case of lesions were equal echo (with high melanin content). The lesions in 11 patients had clear boundaries, while other 2 patients lacked the clear borders. Cystic areas were present in the lesions of 3 patients. Six cases had irregular lesions (lobulated), and 7 cases had regular lesions (round, oval). There were acoustic halos around the lesion in 9 cases and smooth and uneven acoustic halos in 5 cases. The results of immunohistochemistry showed that 11 cases were positive for S-100, HMB45 and Melan-A. One patient was not tested for HMB45, while S-100 and Melan-A were positive. One patient did not undergo Melan-A test, while S-100 and HMB45 were positive. Conclusion: Most of the liver metastases of melanoma are mixed echo or hyperechoic, most of them are nodular with clear boundaries combined with vocal halo, and a few of the lesions have cystic areas.
Humans
;
Liver Neoplasms/secondary*
;
MART-1 Antigen
;
Melanins
;
Melanoma/pathology*
;
Retrospective Studies
9.Identification of the glycosylation sites of Opsin3 and its glycosylation modification function.
Zhongjing LIU ; Li QIAO ; Zhaoyang YE ; Wenxiu YANG
Chinese Journal of Biotechnology 2022;38(3):1173-1182
Opsin3 (OPN3) is a photoreceptor membrane protein with a typical seven-alpha helical transmembrane structure that belongs to the G-protein-coupled receptor (GPCR) superfamily and is widely expressed in brain. In recent years, it has been reported that OPN3 is also highly expressed in adipose tissue, and the protein is associated with the production of skin melanin. We found that the N82 site is the glycosylation site of OPN3. SNAP-tagTM has diverse functions and can be applied to a variety of different studies. By constructing a SNAP-tagged OPN3 recombinant protein, the distribution position of SNAP-OPN3 in cells can be clearly observed by fluorescence confocal microscopy using SNAP-Surface® 549 and SNAP-Cell® OregonGreen®, which provides a new method for studying the function of OPN3. It also shows that SNAP-tag does not affect the function of OPN3. Using the SNAP tag we found that OPN3 cannot be taken up to the cell membrane after glycosylation site mutation.
Cell Membrane
;
Glycosylation
;
Melanins
;
Membrane Proteins
;
Skin
10.Physicochemical properties, molecular structure, antioxidant activity, and biological function of extracellular melanin from Ascosphaera apis.
Zhi LI ; Hui HENG ; Qiqian QIN ; Lanchun CHEN ; Yuedi WANG ; Zeyang ZHOU
Journal of Zhejiang University. Science. B 2022;23(5):365-381
Ascosphaera apis spores containing a dark-colored pigment infect honeybee larvae, resulting in a large-scale collapse of the bee colony due to chalkbrood disease. However, little is known about the pigment or whether it plays a role in bee infection caused by A. apis. In this study, the pigment was isolated by alkali extraction, acid hydrolysis, and repeated precipitation. Ultraviolet (UV) analysis revealed that the pigment had a color value of 273, a maximum absorption peak at 195 nm, and a high alkaline solubility (7.67%) and acid precipitability. Further chemical structure analysis of the pigment, including elemental composition, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, mass spectrometry, and nuclear magnetic resonance (NMR), proved that it was a eumelanin with a typical indole structure. The molecular formula of melanin is C10H6O4N2, and its molecular weight is 409 Da. Melanin has hydroxyl, carboxyl, amino, and phenolic groups that can potentially chelate to metal ions. Antioxidant function analyses showed that A. apis melanin had a high scavenging activity against superoxide, hydroxyl, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, and a high reducing ability to Fe3+. Indirect immunofluorescence assay (IFA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses showed that A. apis melanin was located on the spore wall. The spore wall localization, antioxidant activity, and metal ion chelating properties of fungal melanin have been suggested to contribute to spore pathogenicity. However, further infection experiments showed that melanin-deficient spores did not reduce the mortality of bee larvae, indicating that melanin does not increase the virulence of A. apis spores. This study is the first report on melanin produced by A. apis, providing an important background reference for further study on its role in A. apis.
Animals
;
Antioxidants/pharmacology*
;
Larva
;
Melanins
;
Molecular Structure
;
Onygenales

Result Analysis
Print
Save
E-mail